Xiujuan Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2892489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lightâ€50aking Induced Optical Tuning in Rare Earthâ€Doped Allâ€Inorganic Perovskite. Advanced Functional Materials, 2022, 32, 2107086.	14.9	10
2	Localized state effect and exciton dynamics for monolayer WS ₂ . Optics Express, 2021, 29, 5856.	3.4	9
3	Liquid-Metal-Assisted Growth of Vertical GaSe/MoS ₂ p–n Heterojunctions for Sensitive Self-Driven Photodetectors. ACS Nano, 2021, 15, 10039-10047.	14.6	73
4	Cell membranes targeted unimolecular prodrug for programmatic photodynamic-chemo therapy. Theranostics, 2021, 11, 3502-3511.	10.0	12
5	Broadband emission in all-inorganic metal halide perovskites with intrinsic vacancies. Journal of Materials Chemistry C, 2020, 8, 13976-13981.	5.5	13
6	Epitaxial synthesis of ultrathin β-In ₂ Se ₃ /MoS ₂ heterostructures with high visible/near-infrared photoresponse. Nanoscale, 2020, 12, 6480-6488.	5.6	42
7	Wavelength-Tunable Interlayer Exciton Emission at the Near-Infrared Region in van der Waals Semiconductor Heterostructures. Nano Letters, 2020, 20, 3361-3368.	9.1	35
8	Trap-Mediated Energy Transfer in Er-Doped Cesium Lead Halide Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 3320-3326.	4.6	6
9	WO ₃ –WS ₂ Vertical Bilayer Heterostructures with High Photoluminescence Quantum Yield. Journal of the American Chemical Society, 2019, 141, 11754-11758.	13.7	69
10	Carrier-Funneling-Induced Efficient Energy Transfer in CdSxSe1–x Heterostructure Microplates. ACS Energy Letters, 2019, 4, 2796-2804.	17.4	15
11	Enhanced luminescent intensity in a free-standing erbium silicate microplate. Journal of Modern Optics, 2019, 66, 1951-1955.	1.3	0
12	Probing and Manipulating Carrier Interlayer Diffusion in van der Waals Multilayer by Constructing Type-I Heterostructure. Nano Letters, 2019, 19, 7217-7225.	9.1	42
13	Trion-Induced Distinct Transient Behavior and Stokes Shift in WS ₂ Monolayers. Journal of Physical Chemistry Letters, 2019, 10, 3763-3772.	4.6	13
14	Phononâ€Assisted Electroâ€Optical Switches and Logic Gates Based on Semiconductor Nanostructures. Advanced Materials, 2019, 31, e1901263.	21.0	21
15	Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Research, 2019, 12, 1894-1899.	10.4	96
16	Multicolor Semiconductor Lasers. Advanced Optical Materials, 2019, 7, 1900071.	7.3	28
17	Ultra-long distance carrier transportation in bandgap-graded CdS _x Se _{1â^'x} nanowire waveguides. Nanoscale, 2019, 11, 8494-8501.	5.6	11
18	High-responsivity two-dimensional p-PbI ₂ /n-WS ₂ vertical heterostructure photodetectors enhanced by photogating effect. Materials Horizons, 2019, 6, 1474-1480.	12.2	51

Xiujuan Zhuang

#	Article	IF	CITATIONS
19	Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals. ACS Nano, 2018, 12, 4853-4860.	14.6	75
20	Wavelength Selective Photodetectors Integrated on a Single Compositionâ€Graded Semiconductor Nanowire. Advanced Optical Materials, 2018, 6, 1800293.	7.3	21
21	Spatially composition-modulated two-dimensional WS _{2x} Se _{2(1â^x)} nanosheets. Nanoscale, 2017, 9, 4707-4712.	5.6	39
22	Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS ₂ Nanosheets. ACS Nano, 2017, 11, 4892-4898.	14.6	123
23	Nonlinear photoluminescence in monolayer WS ₂ : parabolic emission and excitation fluence-dependent recombination dynamics. Nanoscale, 2017, 9, 7235-7241.	5.6	41
24	Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Research, 2017, 10, 3385-3395.	10.4	113
25	Perovskite–Erbium Silicate Nanosheet Hybrid Waveguide Photodetectors at the Nearâ€Infrared Telecommunication Band. Advanced Materials, 2017, 29, 1604431.	21.0	132
26	Vapor growth and interfacial carrier dynamics of high-quality CdS-CdSSe-CdS axial nanowire heterostructures. Nano Energy, 2017, 32, 28-35.	16.0	62
27	Composition-Modulated Two-Dimensional Semiconductor Lateral Heterostructures <i>via</i> Layer-Selected Atomic Substitution. ACS Nano, 2017, 11, 961-967.	14.6	99
28	Highâ€Performance Flexible Photodetectors based on Highâ€Quality Perovskite Thin Films by a Vapor–Solution Method. Advanced Materials, 2017, 29, 1703256.	21.0	121
29	Nanolaser arrays based on individual waved CdS nanoribbons. Laser and Photonics Reviews, 2016, 10, 458-464.	8.7	49
30	Power―and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses. Laser and Photonics Reviews, 2016, 10, 835-842.	8.7	16
31	Wang <i>etÂal.</i> Reply:. Physical Review Letters, 2016, 117, 219702.	7.8	2
32	Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors. Nano-Micro Letters, 2016, 8, 29-35.	27.0	101
33	Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers. Nano Research, 2016, 9, 933-941.	10.4	33
34	Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 <i>μ</i> m. Semiconductor Science and Technology, 2015, 30, 105033.	2.0	52
35	An air-stable microwire radial heterojunction with high photoconductivity based on a new building block. Journal of Materials Chemistry C, 2015, 3, 5933-5939.	5.5	14
36	High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band. Physical Review Letters, 2015, 115, 027403.	7.8	43

Xiujuan Zhuang

#	Article	IF	CITATIONS
37	Lateral Growth of Composition Graded Atomic Layer MoS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Nanosheets. Journal of the American Chemical Society, 2015, 137, 5284-5287.	13.7	191
38	Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	2
39	Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays. Journal of Applied Physics, 2014, 115, 224308.	2.5	3
40	The electric dipole moment of cobalt monoxide, CoO. Journal of Chemical Physics, 2014, 140, 124301.	3.0	2
41	Synthesis and Diameter-dependent Thermal Conductivity of InAs Nanowires. Nano-Micro Letters, 2014, 6, 301-306.	27.0	25
42	Semiconductor Alloy Nanoribbon Lateral Heterostructures for Highâ€Performance Photodetectors. Advanced Materials, 2014, 26, 2844-2849.	21.0	70
43	Growth of Alloy MoS _{2<i>x</i>} Se _{2(1–<i>x</i>)} Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. Journal of the American Chemical Society, 2014, 136, 3756-3759.	13.7	444
44	Dilute tin-doped CdS nanowires for low-loss optical waveguiding. Journal of Materials Chemistry C, 2013, 1, 4391.	5.5	13
45	Surface plasmon resonance enhanced band-edge emission of CdS–SiO ₂ core–shell nanowires with gold nanoparticles attached. Journal of Materials Chemistry C, 2013, 1, 566-571.	5.5	23
46	Low-Threshold Nanowire Laser Based on Composition-Symmetric Semiconductor Nanowires. Nano Letters, 2013, 13, 1251-1256.	9.1	67
47	Complete composition tunability of Cd1â^'Zn Te alloy nanostructures along a single substrate. Materials Letters, 2013, 105, 90-94.	2.6	8
48	Synthesis and optical properties of InP quantum dot/nanowire heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1898-1902.	1.8	9
49	Room-Temperature Dual-Wavelength Lasing from Single-Nanoribbon Lateral Heterostructures. Journal of the American Chemical Society, 2012, 134, 12394-12397.	13.7	109
50	Wavelength-Converted/Selective Waveguiding Based on Composition-Graded Semiconductor Nanowires. Nano Letters, 2012, 12, 5003-5007.	9.1	87
51	Composition and Bandgapâ€Graded Semiconductor Alloy Nanowires. Advanced Materials, 2012, 24, 13-33.	21.0	113
52	On-Nanowire Spatial Band Gap Design for White Light Emission. Nano Letters, 2011, 11, 5085-5089.	9.1	81