Xiujuan Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2892489/publications.pdf

Version: 2024-02-01

	172457	175258
2,930	29	52
citations	h-index	g-index
		4500
53	53	4583
docs citations	times ranked	citing authors
	citations 53	2,930 29 citations h-index 53 53

#	Article	IF	Citations
1	Growth of Alloy MoS _{2<i>x</i>} Se _{2(1â€"<i>x</i>)} Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. Journal of the American Chemical Society, 2014, 136, 3756-3759.	13.7	444
2	Lateral Growth of Composition Graded Atomic Layer MoS _{2(1–<i>x</i>)} Se _{2<i>x</i>>/sub> Nanosheets. Journal of the American Chemical Society, 2015, 137, 5284-5287.}	13.7	191
3	Perovskite–Erbium Silicate Nanosheet Hybrid Waveguide Photodetectors at the Nearâ€Infrared Telecommunication Band. Advanced Materials, 2017, 29, 1604431.	21.0	132
4	Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS ₂ Nanosheets. ACS Nano, 2017, 11, 4892-4898.	14.6	123
5	Highâ€Performance Flexible Photodetectors based on Highâ€Quality Perovskite Thin Films by a Vaporâ€"Solution Method. Advanced Materials, 2017, 29, 1703256.	21.0	121
6	Composition and Bandgapâ€Graded Semiconductor Alloy Nanowires. Advanced Materials, 2012, 24, 13-33.	21.0	113
7	Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Research, 2017, 10, 3385-3395.	10.4	113
8	Room-Temperature Dual-Wavelength Lasing from Single-Nanoribbon Lateral Heterostructures. Journal of the American Chemical Society, 2012, 134, 12394-12397.	13.7	109
9	Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors. Nano-Micro Letters, 2016, 8, 29-35.	27.0	101
10	Composition-Modulated Two-Dimensional Semiconductor Lateral Heterostructures <i>via</i> Layer-Selected Atomic Substitution. ACS Nano, 2017, 11, 961-967.	14.6	99
11	Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Research, 2019, 12, 1894-1899.	10.4	96
12	Wavelength-Converted/Selective Waveguiding Based on Composition-Graded Semiconductor Nanowires. Nano Letters, 2012, 12, 5003-5007.	9.1	87
13	On-Nanowire Spatial Band Gap Design for White Light Emission. Nano Letters, 2011, 11, 5085-5089.	9.1	81
14	Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals. ACS Nano, 2018, 12, 4853-4860.	14.6	75
15	Liquid-Metal-Assisted Growth of Vertical GaSe/MoS ₂ p–n Heterojunctions for Sensitive Self-Driven Photodetectors. ACS Nano, 2021, 15, 10039-10047.	14.6	73
16	Semiconductor Alloy Nanoribbon Lateral Heterostructures for Highâ€Performance Photodetectors. Advanced Materials, 2014, 26, 2844-2849.	21.0	70
17	WO ₃ –WS ₂ Vertical Bilayer Heterostructures with High Photoluminescence Quantum Yield. Journal of the American Chemical Society, 2019, 141, 11754-11758.	13.7	69
18	Low-Threshold Nanowire Laser Based on Composition-Symmetric Semiconductor Nanowires. Nano Letters, 2013, 13, 1251-1256.	9.1	67

#	Article	IF	Citations
19	Vapor growth and interfacial carrier dynamics of high-quality CdS-CdSSe-CdS axial nanowire heterostructures. Nano Energy, 2017, 32, 28-35.	16.0	62
20	Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at $1.31 < i > \hat{l} / 4 < /i > m$. Semiconductor Science and Technology, 2015, 30, 105033.	2.0	52
21	High-responsivity two-dimensional p-Pbl ₂ /n-WS ₂ vertical heterostructure photodetectors enhanced by photogating effect. Materials Horizons, 2019, 6, 1474-1480.	12.2	51
22	Nanolaser arrays based on individual waved CdS nanoribbons. Laser and Photonics Reviews, 2016, 10, 458-464.	8.7	49
23	High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band. Physical Review Letters, 2015, 115, 027403.	7.8	43
24	Probing and Manipulating Carrier Interlayer Diffusion in van der Waals Multilayer by Constructing Type-I Heterostructure. Nano Letters, 2019, 19, 7217-7225.	9.1	42
25	Epitaxial synthesis of ultrathin β-ln ₂ Se ₃ /MoS ₂ heterostructures with high visible/near-infrared photoresponse. Nanoscale, 2020, 12, 6480-6488.	5.6	42
26	Nonlinear photoluminescence in monolayer WS ₂ : parabolic emission and excitation fluence-dependent recombination dynamics. Nanoscale, 2017, 9, 7235-7241.	5.6	41
27	Spatially composition-modulated two-dimensional WS _{2x} Se _{2(1â^'x)} nanosheets. Nanoscale, 2017, 9, 4707-4712.	5.6	39
28	Wavelength-Tunable Interlayer Exciton Emission at the Near-Infrared Region in van der Waals Semiconductor Heterostructures. Nano Letters, 2020, 20, 3361-3368.	9.1	35
29	Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers. Nano Research, 2016, 9, 933-941.	10.4	33
30	Multicolor Semiconductor Lasers. Advanced Optical Materials, 2019, 7, 1900071.	7.3	28
31	Synthesis and Diameter-dependent Thermal Conductivity of InAs Nanowires. Nano-Micro Letters, 2014, 6, 301-306.	27.0	25
32	Surface plasmon resonance enhanced band-edge emission of CdS–SiO ₂ core–shell nanowires with gold nanoparticles attached. Journal of Materials Chemistry C, 2013, 1, 566-571.	5.5	23
33	Wavelength Selective Photodetectors Integrated on a Single Compositionâ€Graded Semiconductor Nanowire. Advanced Optical Materials, 2018, 6, 1800293.	7.3	21
34	Phononâ€Assisted Electroâ€Optical Switches and Logic Gates Based on Semiconductor Nanostructures. Advanced Materials, 2019, 31, e1901263.	21.0	21
35	Power―and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses. Laser and Photonics Reviews, 2016, 10, 835-842.	8.7	16
36	Carrier-Funneling-Induced Efficient Energy Transfer in CdSxSe1–x Heterostructure Microplates. ACS Energy Letters, 2019, 4, 2796-2804.	17.4	15

#	Article	IF	CITATIONS
37	An air-stable microwire radial heterojunction with high photoconductivity based on a new building block. Journal of Materials Chemistry C, 2015, 3, 5933-5939.	5.5	14
38	Dilute tin-doped CdS nanowires for low-loss optical waveguiding. Journal of Materials Chemistry C, 2013, 1, 4391.	5.5	13
39	Trion-Induced Distinct Transient Behavior and Stokes Shift in WS ₂ Monolayers. Journal of Physical Chemistry Letters, 2019, 10, 3763-3772.	4.6	13
40	Broadband emission in all-inorganic metal halide perovskites with intrinsic vacancies. Journal of Materials Chemistry C, 2020, 8, 13976-13981.	5. 5	13
41	Cell membranes targeted unimolecular prodrug for programmatic photodynamic-chemo therapy. Theranostics, 2021, 11, 3502-3511.	10.0	12
42	Ultra-long distance carrier transportation in bandgap-graded CdS _x Se _{1â^'x} nanowire waveguides. Nanoscale, 2019, 11, 8494-8501.	5.6	11
43	Lightâ€Soaking Induced Optical Tuning in Rare Earthâ€Doped Allâ€Inorganic Perovskite. Advanced Functional Materials, 2022, 32, 2107086.	14.9	10
44	Synthesis and optical properties of InP quantum dot/nanowire heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1898-1902.	1.8	9
45	Localized state effect and exciton dynamics for monolayer WS ₂ . Optics Express, 2021, 29, 5856.	3.4	9
46	Complete composition tunability of Cd1 \hat{a} 2n Te alloy nanostructures along a single substrate. Materials Letters, 2013, 105, 90-94.	2.6	8
47	Trap-Mediated Energy Transfer in Er-Doped Cesium Lead Halide Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 3320-3326.	4.6	6
48	Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays. Journal of Applied Physics, 2014, 115, 224308.	2.5	3
49	The electric dipole moment of cobalt monoxide, CoO. Journal of Chemical Physics, 2014, 140, 124301.	3.0	2
50	Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	2
51	Wang <i>etÂal.</i> Reply:. Physical Review Letters, 2016, 117, 219702.	7.8	2
52	Enhanced luminescent intensity in a free-standing erbium silicate microplate. Journal of Modern Optics, 2019, 66, 1951-1955.	1.3	0