

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/289028/publications.pdf Version: 2024-02-01

Fux M Hoi

#	Article	IF	CITATIONS
1	Investigation of glial fibrillary acidic protein (CFAP) in body fluids as a potential biomarker for glioma: a systematic review and meta-analysis. Biomarkers, 2022, 27, 1-12.	1.9	13
2	GFAP splice variants fine-tune glioma cell invasion and tumour dynamics by modulating migration persistence. Scientific Reports, 2022, 12, 424.	3.3	17
3	Transcriptomic and functional analysis of Aβ1-42 oligomer-stimulated human monocyte-derived microglia-like cells. Brain, Behavior, and Immunity, 2022, 100, 219-230.	4.1	4
4	Amyloidâ€Î² plaques affect astrocyte Kir4.1 protein expression but not function in the dentate gyrus of APP / PS1 mice. Glia, 2022, 70, 748-767.	4.9	10
5	Cover Image, Volume 70, Issue 4. Glia, 2022, 70, .	4.9	0
6	Both male and female APPswe/PSEN1dE9 mice are impaired in spatial memory and cognitive flexibility at 9 months of age. Neurobiology of Aging, 2022, 113, 28-38.	3.1	13
7	The neurovascular unit in leukodystrophies: towards solving the puzzle. Fluids and Barriers of the CNS, 2022, 19, 18.	5.0	5
8	Single-cell profiling of human subventricular zone progenitors identifies SFRP1 as a target to re-activate progenitors. Nature Communications, 2022, 13, 1036.	12.8	19
9	Microglial transcriptomics meets genetics: new disease leads. Nature Reviews Neurology, 2022, 18, 191-192.	10.1	0
10	Calcium signaling in individual APP/PS1 mouse dentate gyrus astrocytes increases <i>ex vivo</i> with Al̂² pathology and age without affecting astrocyte network activity. Journal of Neuroscience Research, 2022, 100, 1281-1295.	2.9	3
11	Loss of laminâ€B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell, 2022, 21, e13521.	6.7	53
12	Exposure to the Amino Acids Histidine, Lysine, and Threonine Reduces mTOR Activity and Affects Neurodevelopment in a Human Cerebral Organoid Model. Nutrients, 2022, 14, 2175.	4.1	2
13	GFAP Alternative Splicing and the Relevance for Disease – A Focus on Diffuse Gliomas. ASN Neuro, 2022, 14, 175909142211020.	2.7	9
14	Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Molecular Psychiatry, 2021, 26, 3336-3349.	7.9	40
15	Viscoelastic mapping of mouse brain tissue: Relation to structure and age. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104159.	3.1	34
16	New GFAP splice isoform (GFAPµ) differentially expressed in glioma translates into 21 kDa Nâ€ŧerminal GFAP protein. FASEB Journal, 2021, 35, e21389.	0.5	6
17	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
18	Reactive astrocytes as treatment targets in Alzheimer's disease—Systematic review of studies using the <scp>APPswePS1dE9</scp> mouse model. Glia, 2021, 69, 1852-1881.	4.9	37

#	Article	IF	CITATIONS
19	Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochemical Research, 2021, 46, 2662-2675.	3.3	30
20	DNA methylation differences in cortical grey and white matter in schizophrenia. Epigenomics, 2021, 13, 1157-1169.	2.1	5
21	Mechanical alterations of the hippocampus in the APP/PS1 Alzheimer's disease mouse model. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104697.	3.1	6
22	A loss of mature microglial markers without immune activation in schizophrenia. Glia, 2021, 69, 1251-1267.	4.9	43
23	Synapse Pathology in Schizophrenia: A Meta-analysis of Postsynaptic Elements in Postmortem Brain Studies. Schizophrenia Bulletin, 2020, 46, 374-386.	4.3	77
24	Microglial activation in schizophrenia: Is translocator 18†kDa protein (TSPO) the right marker?. Schizophrenia Research, 2020, 215, 167-172.	2.0	30
25	Complement C5 Contributes to Brain Injury After Subarachnoid Hemorrhage. Translational Stroke Research, 2020, 11, 678-688.	4.2	24
26	From Stroke to Dementia: a Comprehensive Review Exposing Tight Interactions Between Stroke and Amyloid-β Formation. Translational Stroke Research, 2020, 11, 601-614.	4.2	82
27	Profiling Microglia From Alzheimer's Disease Donors and Non-demented Elderly in Acute Human Postmortem Cortical Tissue. Frontiers in Molecular Neuroscience, 2020, 13, 134.	2.9	51
28	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	3.9	26
29	A characterization of the molecular phenotype and inflammatory response of schizophrenia patient-derived microglia-like cells. Brain, Behavior, and Immunity, 2020, 90, 196-207.	4.1	37
30	Denser brain capillary network with preserved pericytes in Alzheimer's disease. Brain Pathology, 2020, 30, 1071-1086.	4.1	19
31	Cannabinoids and psychotic symptoms: A potential role for a genetic variant in the P2X purinoceptor 7 (P2RX7) gene. Brain, Behavior, and Immunity, 2020, 88, 573-581.	4.1	14
32	The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Communications, 2020, 2, fcaa150.	3.3	10
33	The impact of antidiabetic treatment on human hypothalamic infundibular neurons and microglia. JCl Insight, 2020, 5, .	5.0	15
34	GFAP alternative splicing regulates glioma cell–ECM interaction in a DUSP4â€dependent manner. FASEB Journal, 2019, 33, 12941-12959.	0.5	15
35	Importance of GFAP isoformâ€specific analyses in astrocytoma. Glia, 2019, 67, 1417-1433.	4.9	62
36	Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease. Acta Neuropathologica Communications, 2019, 7, 84.	5.2	28

#	Article	IF	CITATIONS
37	Microglia in post-mortem brain tissue of patients with bipolar disorder are not immune activated. Translational Psychiatry, 2019, 9, 153.	4.8	45
38	DNA methylation changes related to nutritional deprivation: a genome-wide analysis of population and in vitro data. Clinical Epigenetics, 2019, 11, 80.	4.1	14
39	Liprin alfa 2 gene expression is increased by cannabis use and associated with neuropsychological function. European Neuropsychopharmacology, 2019, 29, 643-652.	0.7	3
40	Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nature Neuroscience, 2019, 22, 78-90.	14.8	288
41	Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Progress in Neurobiology, 2018, 165-167, 66-86.	5.7	79
42	Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 138-146.	1.9	142
43	S5â€01â€02: ASTROCYTES IN ALZHEIMER'S DISEASE: MOLECULAR CHANGES AND FUNCTIONAL CONSEQUENC Alzheimer's and Dementia, 2018, 14, P1624.	ES _{0.8}	0
44	Regional variations in stiffness in live mouse brain tissue determined by depth-controlled indentation mapping. Scientific Reports, 2018, 8, 12517.	3.3	81
45	Microglia innately develop within cerebral organoids. Nature Communications, 2018, 9, 4167.	12.8	405
46	Colony-Stimulating Factor 1 Receptor (CSF1R) Regulates Microglia Density and Distribution, but Not Microglia Differentiation InÂVivo. Cell Reports, 2018, 24, 1203-1217.e6.	6.4	110
47	Immune hyperreactivity of AÎ ² plaque-associated microglia in Alzheimer's disease. Neurobiology of Aging, 2017, 55, 115-122.	3.1	205
48	Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Translational Psychiatry, 2017, 7, e1075-e1075.	4.8	268
49	Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP), Vimentin, and Peripherin. Cold Spring Harbor Perspectives in Biology, 2017, 9, a021642.	5.5	89
50	Characterization of macrophages from schizophrenia patients. NPJ Schizophrenia, 2017, 3, 41.	3.6	16
51	Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cellâ€ŧypeâ€specific. Glia, 2017, 65, 50-61.	4.9	84
52	Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions. Frontiers in Immunology, 2017, 8, 1810.	4.8	96
53	GFAPÎ′/GFAPα ratio directs astrocytoma gene expression towards a more malignant profile. Oncotarget, 2017, 8, 88104-88121.	1.8	19
54	The Indispensable Roles of Microglia and Astrocytes during Brain Development. Frontiers in Human Neuroscience, 2016, 10, 566.	2.0	411

#	Article	IF	CITATIONS
55	Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 492-505.	3.8	38
56	GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions. Cellular and Molecular Life Sciences, 2016, 73, 4101-4120.	5.4	46
57	Transcriptional profiling of CD11c-positive microglia accumulating around amyloid plaques in a mouse model for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1847-1860.	3.8	158
58	Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Progress in Neurobiology, 2016, 144, 121-141.	5.7	238
59	Astrocytes: a central element in neurological diseases. Acta Neuropathologica, 2016, 131, 323-345.	7.7	597
60	Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathologica Communications, 2015, 3, 31.	5.2	473
61	Glioblastomaâ€derived extracellular vesicles modify the phenotype of monocytic cells. International Journal of Cancer, 2015, 137, 1630-1642.	5.1	154
62	Activation of endogenous neural stem cells for multiple sclerosis therapy. Frontiers in Neuroscience, 2015, 8, 454.	2.8	21
63	Visualization of Active Glucocerebrosidase in Rodent Brain with High Spatial Resolution following In Situ Labeling with Fluorescent Activity Based Probes. PLoS ONE, 2015, 10, e0138107.	2.5	28
64	Phenotypic Variation in Aicardi–Goutières Syndrome Explained by Cell-Specific IFN-Stimulated Gene Response and Cytokine Release. Journal of Immunology, 2015, 194, 3623-3633.	0.8	37
65	Aicardi–GoutiÔres syndrome harbours abundant systemic and brain-reactive autoantibodies. Annals of the Rheumatic Diseases, 2015, 74, 1931-1939.	0.9	35
66	GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wildâ€ŧype mice and changes the transcriptional response of reactive glia in mouse model for <scp>A</scp> lzheimer's disease. Glia, 2015, 63, 1036-1056.	4.9	134
67	Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Current Opinion in Cell Biology, 2015, 32, 121-130.	5.4	602
68	Editorial overview: Cell architecture: Intermediate filaments — from molecules to patients. Current Opinion in Cell Biology, 2015, 32, v-vi.	5.4	0
69	ADAM10 gene expression in the blood cells of Alzheimer's disease patients and mild cognitive impairment subjects. Biomarkers, 2015, 20, 196-201.	1.9	25
70	Abundant kif21b is associated with accelerated progression in neurodegenerative diseases. Acta Neuropathologica Communications, 2014, 2, 144.	5.2	30
71	The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Frontiers in Molecular Neuroscience, 2014, 7, 73.	2.9	99
72	A star is born: new insights into the mechanism of astrogenesis. Cellular and Molecular Life Sciences, 2014. 71. 433-447.	5.4	84

#	Article	lF	CITATIONS
73	Enteric <scp>GFAP</scp> expression and phosphorylation in Parkinson's disease. Journal of Neurochemistry, 2014, 130, 805-815.	3.9	148
74	Histone acetylation in astrocytes suppresses GFAP and stimulates a re-organization of the intermediate filament network. Journal of Cell Science, 2014, 127, 4368-80.	2.0	51
75	Isolation of Neural Progenitor Cells From the Human Adult Subventricular Zone Based on Expression of the Cell Surface Marker CD271. Stem Cells Translational Medicine, 2014, 3, 470-480.	3.3	38
76	Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2014, 2, 76.	5.2	69
77	Silencing GFAP isoforms in astrocytoma cells disturbs lamininâ€dependent motility and cell adhesion. FASEB Journal, 2014, 28, 2942-2954.	0.5	37
78	Isolation of glia from Alzheimer's mice reveals inflammation andÂdysfunction. Neurobiology of Aging, 2014, 35, 2746-2760.	3.1	317
79	Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease. Neurobiology of Aging, 2014, 35, 492-510.	3.1	190
80	Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiology of Aging, 2014, 35, 1-14.	3.1	286
81	Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer¿s disease. Acta Neuropathologica Communications, 2014, 2, 76.	5.2	70
82	Resident adult neural stem cells in Parkinson′s disease—The brain′s own repair system?. European Journal of Pharmacology, 2013, 719, 117-127.	3.5	34
83	Cortical beta amyloid protein triggers an immune response, but no synaptic changes in the APPswe/PS1dE9 Alzheimer's disease mouse model. Neurobiology of Aging, 2013, 34, 1328-1342.	3.1	68
84	Shades of gray: The delineation of marker expression within the adult rodent subventricular zone. Progress in Neurobiology, 2013, 111, 1-16.	5.7	20
85	Reactive glia show increased immunoproteasome activity in Alzheimer's disease. Brain, 2013, 136, 1415-1431.	7.6	130
86	Reduced amyloidâ€Î² degradation in early <scp>A</scp> lzheimer's disease but not in the <scp>APP</scp> swe <scp>PS</scp> 1dE9 and 3x <scp>T</scp> gâ€ <scp>AD</scp> mouse models. Aging Cell, 2013, 12, 499-507.	6.7	53
87	Expression of Vitamin D Receptor and Metabolizing Enzymes in Multiple Sclerosis—Affected Brain Tissue. Journal of Neuropathology and Experimental Neurology, 2013, 72, 91-105.	1.7	106
88	Chronic exposure of astrocytes to interferon-α reveals molecular changes related to Aicardi–Goutières syndrome. Brain, 2013, 136, 245-258.	7.6	44
89	Unravelling the actions of deep brain stimulation: potential role for astrocytes. Molecular Psychiatry, 2012, 17, 115-115.	7.9	9
90	Reply: Quantitative evaluation of the human subventricular zone. Brain, 2012, 135, e222-e222.	7.6	2

#	Article	IF	CITATIONS
91	GFAP Isoforms in Adult Mouse Brain with a Focus on Neurogenic Astrocytes and Reactive Astrogliosis in Mouse Models of Alzheimer Disease. PLoS ONE, 2012, 7, e42823.	2.5	246
92	GFAPδ Expression in Glia of the Developmental and Adolescent Mouse Brain. PLoS ONE, 2012, 7, e52659.	2.5	49
93	Dementia in Parkinson's Disease Correlates withα-Synuclein Pathology but Not with Cortical Astrogliosis. Parkinson's Disease, 2012, 2012, 1-13.	1.1	15
94	Deep brain stimulation and the role of astrocytes. Molecular Psychiatry, 2012, 17, 124-131.	7.9	102
95	Differential cell proliferation in the cortex of the appsweps1de9 alzheimer's disease mouse model. Glia, 2012, 60, 615-629.	4.9	114
96	Presenilin mouse and zebrafish models for dementia: Focus on neurogenesis. Progress in Neurobiology, 2011, 93, 149-164.	5.7	34
97	GFAP in health and disease. Progress in Neurobiology, 2011, 93, 421-443.	5.7	824
98	The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain, 2011, 134, 3249-3263.	7.6	103
99	Defective Glial Maturation in Vanishing White Matter Disease. Journal of Neuropathology and Experimental Neurology, 2011, 70, 69-82.	1.7	111
100	Migrating neuroblasts in the adult human brain: a stream reduced to a trickle. Cell Research, 2011, 21, 1523-1525.	12.0	29
101	A Cyclic Undecamer Peptide Mimics a Turn in Folded Alzheimer Amyloid β and Elicits Antibodies against Oligomeric and Fibrillar Amyloid and Plaques. PLoS ONE, 2011, 6, e19110.	2.5	13
102	Translational Research in Genomics of Alzheimer's Disease: A Review of Current Practice and Future Perspectives. Journal of Alzheimer's Disease, 2010, 20, 967-980.	2.6	16
103	Immunohistochemical characterization of the out-of frame splice variants GFAP Δ164/Δexon 6 in focal lesions associated with chronic epilepsy. Epilepsy Research, 2010, 90, 99-109.	1.6	14
104	Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAPâ€Î´. Aging Cell, 2010, 9, 313-326.	6.7	126
105	GFAPδ in radial glia and subventricular zone progenitors in the developing human cortex. Development (Cambridge), 2010, 137, 313-321.	2.5	72
106	In vivo targeting of subventricular zone astrocytes. Progress in Neurobiology, 2010, 92, 19-32.	5.7	16
107	Specific Human Astrocyte Subtype Revealed by Affinity Purified GFAP+1 Antibody; Unpurified Serum Cross-Reacts with Neurofilament-L in Alzheimer. PLoS ONE, 2009, 4, e7663.	2.5	23
108	Intermediate filament transcription in astrocytes is repressed by proteasome inhibition. FASEB Journal, 2009, 23, 2710-2726.	0.5	36

#	Article	IF	CITATIONS
109	Observation of Hand Movements by Older Persons with Dementia: Effects on Cognition. Dementia and Geriatric Cognitive Disorders, 2009, 27, 366-374.	1.5	9
110	Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. Journal of Comparative Neurology, 2009, 515, 269-294.	1.6	42
111	Expression patterns of glial fibrillary acidic protein (GFAP)â€delta in epilepsyâ€associated lesional pathologies. Neuropathology and Applied Neurobiology, 2009, 35, 394-405.	3.2	57
112	GFAPδ immunostaining improves visualization of normal and pathologic astrocytic heterogeneity. Neuropathology, 2009, 29, 31-39.	1.2	25
113	Hand motor activity, cognition, mood, and the rest–activity rhythm in dementia. Behavioural Brain Research, 2009, 196, 271-278.	2.2	44
114	Long-term proteasome dysfunction in the mouse brain by expression of aberrant ubiquitin. Neurobiology of Aging, 2009, 30, 847-863.	3.1	57
115	Walking the line: a randomised trial on the effects of a short term walking programme on cognition in dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 802-804.	1.9	75
116	Protein Quality Control in Neurodegeneration: Walking the Tight Rope Between Health and Disease. Journal of Molecular Neuroscience, 2008, 34, 23-33.	2.3	16
117	Proteasome subunit proteins and neuropathology in tauopathies and synucleinopathies: Consequences for proteomic analyses. Proteomics, 2008, 8, 1221-1236.	2.2	27
118	The neuronal ubiquitin-proteasome system: Murine models and their neurological phenotype. Progress in Neurobiology, 2008, 85, 176-193.	5.7	31
119	Effect of Bright Light and Melatonin on Cognitive and Noncognitive Function in Elderly Residents of Group Care Facilities. JAMA - Journal of the American Medical Association, 2008, 299, 2642.	7.4	663
120	Glial Fibrillary Acidic Protein Filaments Can Tolerate the Incorporation of Assembly-compromised GFAP-Î′, but with Consequences for Filament Organization and αB-Crystallin Association. Molecular Biology of the Cell, 2008, 19, 4521-4533.	2.1	91
121	Polyglutamine Expansion Accelerates the Dynamics of Ataxin-1 and Does Not Result in Aggregate Formation. PLoS ONE, 2008, 3, e1503.	2.5	17
122	Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regenerative Medicine, 2007, 2, 425-446.	1.7	55
123	Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain, 2007, 130, 2267-2276.	7.6	93
124	Dose-dependent inhibition of proteasome activity by a mutant ubiquitin associated with neurodegenerative disease. Journal of Cell Science, 2007, 120, 1615-1623.	2.0	85
125	Mutant ubiquitin found in Alzheimer's disease causes neuritic beading of mitochondria in association with neuronal degeneration. Cell Death and Differentiation, 2007, 14, 1721-1732.	11.2	77
126	Ubiquitin proteasome system as a pharmacological target in neurodegeneration. Expert Review of Neurotherapeutics, 2006, 6, 1337-1347.	2.8	26

#	Article	IF	CITATIONS
127	Alzheimer-associated APP+1 transgenic mice: Frameshift β-amyloid precursor protein is secreted in cerebrospinal fluid without inducing neuropathology. Neurobiology of Aging, 2006, 27, 1445-1450.	3.1	7
128	A direct androgenic involvement in the expression of human corticotropin-releasing hormone. Molecular Psychiatry, 2006, 11, 567-576.	7.9	96
129	Co-Expression of Tyrosine Hydroxylase and GTP Cyclohydrolase I in Arginine Vasopressin-Synthesizing Neurons of the Human Supraoptic Nucleus Demonstrated by Laser Microdissection and Real-Time PCR. Neuroendocrinology, 2006, 84, 386-395.	2.5	11
130	hUPF2 Silencing Identifies Physiologic Substrates of Mammalian Nonsense-Mediated mRNA Decay. Molecular and Cellular Biology, 2006, 26, 1272-1287.	2.3	212
131	Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia, 2005, 52, 289-300.	4.9	140
132	Activation of the Notch pathway in Down syndrome: crossâ€ŧalk of Notch and APP. FASEB Journal, 2005, 19, 1451-1458.	0.5	45
133	Protein Quality Control in Alzheimers Disease: A Fatal Saviour. CNS and Neurological Disorders, 2005, 4, 283-292.	4.3	12
134	Activation of the Notch pathway in Down syndrome: cross-talk of Notch and APP. FASEB Journal, 2005, 19, 1451-1458.	0.5	85
135	The proteasome in Alzheimer's disease and Parkinson's disease: lessons from ubiquitin B+1. Trends in Molecular Medicine, 2005, 11, 488-495.	6.7	49
136	Diminished aromatase immunoreactivity in the hypothalamus, but not in the basal forebrain nuclei in Alzheimer's disease. Neurobiology of Aging, 2005, 26, 173-194.	3.1	86
137	Molecular misreading: the frequency of dinucleotide deletions in neuronal mRNAs for β-amyloid precursor protein and ubiquitin B. Neurobiology of Aging, 2005, 26, 145-155.	3.1	24
138	Accumulation of aberrant ubiquitin induces aggregate formation and cell death in polyglutamine diseases. Human Molecular Genetics, 2004, 13, 1803-1813.	2.9	93
139	Frameâ€shifted amyloid precursor protein found in Alzheimer's disease and Down's syndrome increases levels of secreted amyloid β40. Journal of Neurochemistry, 2004, 90, 712-723.	3.9	11
140	Regulation of stearoyl-CoA desaturase-1 after central and peripheral nerve lesions. BMC Neuroscience, 2004, 5, 15.	1.9	13
141	Protein quality control in Alzheimer's disease by the ubiquitin proteasome system. Progress in Neurobiology, 2004, 74, 249-270.	5.7	141
142	Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat. BMC Neuroscience, 2003, 4, 8.	1.9	61
143	Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Molecular Psychiatry, 2003, 8, 786-796.	7.9	134
144	Diseaseâ€specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB Journal, 2003, 17, 2014-2024.	0.5	140

#	Article	IF	CITATIONS
145	Frameshifted β-Amyloid Precursor Protein (APP+1) Is a Secretory Protein, and the Level of APP+1 in Cerebrospinal Fluid Is Linked to Alzheimer Pathology. Journal of Biological Chemistry, 2003, 278, 39637-39643.	3.4	12
146	Cells over-expressing EAAT2 protect motoneurons from excitotoxic death in vitro. NeuroReport, 2003, 14, 1967-1970.	1.2	18
147	Alzheimer's associated variant ubiquitin causes inhibition of the 26S proteasome and chaperone expression. Journal of Neurochemistry, 2003, 86, 394-404.	3.9	78
148	Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. Journal of Cell Biology, 2002, 157, 417-427.	5.2	197
149	Molecular misreading of the ubiquitin B gene and hepatic mallory body formation. Gastroenterology, 2002, 122, 1878-1885.	1.3	48
150	+1 Proteins and aging. International Journal of Biochemistry and Cell Biology, 2002, 34, 1502-1505.	2.8	18
151	Mutant ubiquitin expressed in Alzheimer's disease causes neuronal death ¹ . FASEB Journal, 2001, 15, 2680-2688.	0.5	121
152	Molecular misreading in nonâ€neuronal cells. FASEB Journal, 2000, 14, 1595-1602.	0.5	23
153	Molecular misreading: a new type of transcript mutation expressed during aging. Neurobiology of Aging, 2000, 21, 879-891.	3.1	62
154	Molecular Misreading: A New Type of Transcript Mutation in Gerontology. Annals of the New York Academy of Sciences, 2000, 908, 267-281.	3.8	14
155	Molecular misreading in non-neuronal cells. FASEB Journal, 2000, 14, 1595-1602.	0.5	16
156	Regulation of the LIM-type homeobox gene islet-1 during neuronal regeneration. Neuroscience, 1999, 88, 917-925.	2.3	26
157	Mutations in RNA: a first example of molecular misreading in Alzheimer's disease. Trends in Neurosciences, 1998, 21, 331-335.	8.6	99
158	Frameshift Mutants of β Amyloid Precursor Protein and Ubiquitin-B in Alzheimer's and Down Patients. Science, 1998, 279, 242-247.	12.6	549
159	Chapter 27 Dinucleotide deletions in neuronal transcripts: A novel type of mutation in non-familial Alzheimer's disease and Down syndrome patients. Progress in Brain Research, 1998, 117, 379-395.	1.4	14
160	Differential effects of acth-related peptides and forskolin on rat schwann cell proliferation and low affinity NGF receptor expression. , 1996, 19, 37-45.		0
161	ACTH-related peptides: Receptors and signal transduction systems involved in their neurotrophic and neuroprotective actions. Peptides, 1995, 16, 979-993.	2.4	61
162	Protection by an ACTH4-9analogue against the toxic effects of cisplatin and taxol on sensory neurons and glial cells in vitro. Journal of Neuroscience Research, 1994, 39, 178-185.	2.9	34

#	Article	IF	CITATIONS
163	Involvement of Calcium and cAMP in the Mechanism of Action of Two Melanocortins: ?MSH and an ACTH-(4?9) Analogue. Annals of the New York Academy of Sciences, 1994, 739, 324-327.	3.8	1
164	Nimodipine protects cultured spinal cord neurones from depolarization-induced inhibition of neurite outgrowth. Cell Calcium, 1993, 14, 293-299.	2.4	20
165	The expression of B-50/GAP-43 in Schwann cells is upregulated in degenerating peripheral nerve stumps following nerve injury. Brain Research, 1993, 602, 69-76.	2.2	61
166	Stimulation by melanocortins of neurite outgrowth from spinal and sensory neurons in vitro. Peptides, 1992, 13, 1109-1115.	2.4	52
167	The Role of Astrocytes in Synapse Loss in Alzheimer's Disease: A Systematic Review. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	16