
Kate Vandyke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2890056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Desmogleinâ€2 expression is an independent predictor of poor prognosis patients with multiple myeloma. Molecular Oncology, 2022, 16, 1221-1240.	4.6	9
2	Seed and soil revisited in multiple myeloma. Blood, 2021, 137, 2282-2283.	1.4	1
3	Macrophages in multiple myeloma: key roles and therapeutic strategies. Cancer and Metastasis Reviews, 2021, 40, 273-284.	5.9	11
4	Expression of the chemokine receptor CCR1 promotes the dissemination of multiple myeloma plasma cells <i>in vivo</i> . Haematologica, 2021, 106, 3176-3187.	3.5	11
5	Targeted Disruption of Bone Marrow Stromal Cell-Derived Gremlin1 Limits Multiple Myeloma Disease Progression In Vivo. Cancers, 2020, 12, 2149.	3.7	6
6	Characterization of the role of Samsn1 loss in multiple myeloma development. FASEB BioAdvances, 2020, 2, 554-572.	2.4	3
7	Tumour Dissemination in Multiple Myeloma Disease Progression and Relapse: A Potential Therapeutic Target in High-Risk Myeloma. Cancers, 2020, 12, 3643.	3.7	6
8	LCRFâ€0006, a small molecule mimetic of the Nâ€cadherin antagonist peptide ADHâ€1, synergistically increases multiple myeloma response to bortezomib. FASEB BioAdvances, 2020, 2, 339-353.	2.4	6
9	GLIPR1 expression is reduced in multiple myeloma but is not a tumour suppressor in mice. PLoS ONE, 2020, 15, e0228408.	2.5	2
10	Twist-1 is upregulated by NSD2 and contributes to tumour dissemination and an epithelial-mesenchymal transition-like gene expression signature in t(4;14)-positive multiple myeloma. Cancer Letters, 2020, 475, 99-108.	7.2	22
11	Clodronate-Liposome Mediated Macrophage Depletion Abrogates Multiple Myeloma Tumor Establishment In Vivo. Neoplasia, 2019, 21, 777-787.	5.3	53
12	A niche-dependent myeloid transcriptome signature defines dormant myeloma cells. Blood, 2019, 134, 30-43.	1.4	99
13	Macrophages as a potential therapeutic target: Clodronate-liposome treatment inhibits multiple myeloma tumour establishment in vivo. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e96.	0.4	0
14	Therapeutic Targeting of CCR1 to Prevent Dissemination of Multiple Myeloma Plasma Cells. Blood, 2019, 134, 3099-3099.	1.4	0
15	N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer, 2018, 18, 939.	2.6	222
16	The cationic small molecule GW4869 is cytotoxic to high phosphatidylserine-expressing myeloma cells. British Journal of Haematology, 2017, 177, 423-440.	2.5	24
17	EZH2 deletion in early mesenchyme compromises postnatal bone microarchitecture and structural integrity and accelerates remodeling. FASEB Journal, 2017, 31, 1011-1027.	0.5	55
18	HIF-2α Promotes Dissemination of Plasma Cells in Multiple Myeloma by Regulating CXCL12/CXCR4 and CCR1. Cancer Research, 2017, 77, 5452-5463.	0.9	41

KATE VANDYKE

#	Article	IF	CITATIONS
19	DNA Barcoding Reveals Habitual Clonal Dominance of Myeloma Plasma Cells in the Bone Marrow Microenvironment. Neoplasia, 2017, 19, 972-981.	5.3	18
20	Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget, 2017, 8, 43602-43616.	1.8	37
21	Immunomodulatory Properties of Induced Pluripotent Stem Cellâ€Derived Mesenchymal Cells. Journal of Cellular Biochemistry, 2016, 117, 2844-2853.	2.6	34
22	Identification of Novel EZH2 Targets Regulating Osteogenic Differentiation in Mesenchymal Stem Cells and Development, 2016, 25, 909-921.	2.1	63
23	PTTG1 expression is associated with hyperproliferative disease and poor prognosis in multiple myeloma. Journal of Hematology and Oncology, 2015, 8, 106.	17.0	29
24	Therapeutic targeting of N adherin is an effective treatment for multiple myeloma. British Journal of Haematology, 2015, 171, 387-399.	2.5	25
25	Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo. Experimental Cell Research, 2015, 332, 24-38.	2.6	31
26	The effect of the dual PI3K and <scp>mTOR</scp> inhibitor BEZ235 on tumour growth and osteolytic bone disease in multiple myeloma. European Journal of Haematology, 2015, 94, 343-354.	2.2	29
27	The Role of the $\hat{a} \in \hat{\infty}$ Cancer Stem Cell Niche $\hat{a} \in \hat{a}$ in Cancer Initiation and Progression. , 2014, , .		2
28	SAMSN1 Is a Tumor Suppressor Gene in Multiple Myeloma. Neoplasia, 2014, 16, 572-585.	5.3	36
29	Engineering Interaction between Bone Marrow Derived Endothelial Cells and Electrospun Surfaces for Artificial Vascular Graft Applications. Biomacromolecules, 2014, 15, 1276-1287.	5.4	18
30	Identification of an Epithelial-to-Mesenchymal Transition (EMT)-like Programme in t(4;14)-Positive Multiple Myeloma Reveals Novel Targets for Therapeutic Intervention. Blood, 2014, 124, 647-647.	1.4	1
31	EphB4 enhances the process of endochondral ossification and inhibits remodeling during bone fracture repair. Journal of Bone and Mineral Research, 2013, 28, 926-935.	2.8	42
32	Prospective Histomorphometric and DXA Evaluation of Bone Remodeling in Imatinib-Treated CML Patients: Evidence for Site-Specific Skeletal Effects. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 67-76.	3.6	24
33	Circulating <scp>N</scp> â€cadherin levels are a negative prognostic indicator in patients with multiple myeloma. British Journal of Haematology, 2013, 161, 499-507.	2.5	23
34	Suppression of PDGF-induced PI3 kinase activity by imatinib promotes adipogenesis and adiponectin secretion. Journal of Molecular Endocrinology, 2012, 48, 229-240.	2.5	55
35	The tyrosine kinase inhibitor dasatinib (SPRYCEL) inhibits chondrocyte activity and proliferation. Blood Cancer Journal, 2011, 1, e2-e2.	6.2	25
36	Dysregulation of bone remodeling by imatinib mesylate. Blood, 2010, 115, 766-774.	1.4	126

KATE VANDYKE

#	Article	IF	CITATIONS
37	The tyrosine kinase inhibitor dasatinib dysregulates bone remodeling through inhibition of osteoclasts in vivo. Journal of Bone and Mineral Research, 2010, 25, 1759-1770.	2.8	80
38	Plasma Adiponectin Levels Are Markedly Elevated in Imatinib-Treated Chronic Myeloid Leukemia (CML) Patients: A Mechanism for Improved Insulin Sensitivity in Type 2 Diabetic CML Patients?. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3763-3767.	3.6	51
39	Therapeutic concentrations of dasatinib inhibit in vitro osteoclastogenesis. Leukemia, 2009, 23, 994-997.	7.2	52
40	Imatinib mesylate causes growth plate closure in vivo. Leukemia, 2009, 23, 2155-2159.	7.2	42
41	Dasatinib (SprycelTM) Inhibits Osteoclast Activity in Vitro and in Vivo Via a C-Fms-Dependent and C-Src-Independent Mechanism. Blood, 2008, 112, 3214-3214.	1.4	0
42	Androgen decreases osteoprotegerin expression in prostate cancer cells. Prostate Cancer and Prostatic Diseases, 2007, 10, 160-166.	3.9	2
43	Plant-Derived MINA-05 Inhibits Human Prostate Cancer Proliferation In Vitro and Lymph Node Spread In Vivo. Neoplasia, 2007, 9, 322-331.	5.3	7