Markku Penttonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2890004/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Een studie naar non-verbale synchroniciteit in relatietherapie door observatie van impliciet synchrone houdingen en bewegingen. Gezinstherapie Wereldwijd, 2022, 33, 4-38.	0.0	0
2	Cardiac cycle and respiration phase affect responses to the conditioned stimulus in young adults trained in trace eyeblink conditioning. Journal of Neurophysiology, 2022, 127, 767-775.	1.8	7
3	Associations Between Sympathetic Nervous System Synchrony, Movement Synchrony, and Speech in Couple Therapy. Frontiers in Psychology, 2022, 13, 818356.	2.1	5
4	Rhythmic Memory Consolidation in the Hippocampus. Frontiers in Neural Circuits, 2022, 16, 885684.	2.8	8
5	Studying Nonverbal Synchrony in Couple Therapy—Observing Implicit Posture and Movement Synchrony. Contemporary Family Therapy, 2021, 43, 69-87.	1.3	4
6	Deviance detection in sound frequency in simple and complex sounds in urethane-anesthetized rats. Hearing Research, 2021, 399, 107814.	2.0	4
7	Irradiation of the head reduces adult hippocampal neurogenesis and impairs spatial memory, but leaves overall health intact in rats. European Journal of Neuroscience, 2021, 53, 1885-1904.	2.6	7
8	Nonverbal Synchrony in Couple Therapy Linked to Clients' Well-Being and the Therapeutic Alliance. Frontiers in Psychology, 2021, 12, 718353.	2.1	9
9	Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta. Journal of Neurophysiology, 2020, 123, 1671-1681.	1.8	3
10	Significant Moments in a Couple Therapy Session: Towards the Integration of Different Modalities of Analysis. European Family Therapy Association Series, 2020, , 55-73.	0.3	7
11	Sympathetic nervous system synchrony: An exploratory study of its relationship with the therapeutic alliance and outcome in couple therapy Psychotherapy, 2020, 57, 160-173.	1.2	15
12	The Added Value of Studying Embodied Responses in Couple Therapy Research: A Case Study. Family Process, 2019, 58, 685-697.	2.6	12
13	Breathe out and learn: Expirationâ€contingent stimulus presentation facilitates associative learning in trace eyeblink conditioning. Psychophysiology, 2019, 56, e13387.	2.4	17
14	Alliance Formations in Couple Therapy: A Multimodal and Multimethod Study. Journal of Couple and Relationship Therapy, 2019, 18, 189-222.	0.8	13
15	The role of adolescents' temperament in their positive and negative emotions as well as in psychophysiological reactions during achievement situations. Learning and Individual Differences, 2019, 69, 116-128.	2.7	7
16	Dentate spikes and learning: disrupting hippocampal function during memory consolidation can improve pattern separation. Journal of Neurophysiology, 2019, 121, 131-139.	1.8	11
17	Electrodermal Activity in Couple Therapy for Intimate Partner Violence. Contemporary Family Therapy, 2018, 40, 138-152.	1.3	5
18	Hippocampal theta phase–contingent memory retrieval in delay and trace eyeblink conditioning. Behavioural Brain Research, 2018, 337, 264-270.	2.2	3

MARKKU PENTTONEN

#	Article	IF	CITATIONS
19	Electrodermal Activity, Respiratory Sinus Arrhythmia, and Heart Rate Variability in a Relationship Enrichment Program. Mindfulness, 2018, 9, 1076-1087.	2.8	6
20	The Relational Mind in Couple Therapy: A Batesonâ€Inspired View of Human Life as an Embodied Stream. Family Process, 2018, 57, 855-866.	2.6	17
21	Learning by heart: cardiac cycle reveals an effective time window for learning. Journal of Neurophysiology, 2018, 120, 830-838.	1.8	13
22	Soft Prosody and Embodied Attunement in Therapeutic Interaction: A Multimethod Case Study of a Moment of Change. Journal of Constructivist Psychology, 2017, 30, 211-234.	1.1	27
23	Hippocampal electrical stimulation disrupts associative learning when targeted at dentate spikes. Journal of Physiology, 2017, 595, 4961-4971.	2.9	21
24	Sympathetic Nervous System Synchrony in Couple Therapy. Journal of Marital and Family Therapy, 2016, 42, 383-395.	1.1	58
25	Affective Arousal During Blaming in Couple Therapy: Combining Analyses of Verbal Discourse and Physiological Responses in Two Case Studies. Contemporary Family Therapy, 2016, 38, 373-384.	1.3	20
26	Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus. PLoS ONE, 2016, 11, e0164675.	2.5	33
27	The Embodied Attunement of Therapists and a Couple within Dialogical Psychotherapy: An Introduction to the Relational Mind Research Project. Family Process, 2015, 54, 703-715.	2.6	59
28	Phase matters: responding to and learning about peripheral stimuli depends on hippocampal Î, phase at stimulus onset. Learning and Memory, 2015, 22, 307-317.	1.3	11
29	Auditory cortical and hippocampal local-field potentials to frequency deviant tones in urethane-anesthetized rats: An unexpected role of the sound frequencies themselves. International Journal of Psychophysiology, 2015, 96, 134-140.	1.0	15
30	The Significance of Silent Moments in Creating Words for the Not-Yet-Spoken Experiences in Threat of Divorce. Psychology, 2015, 06, 1360-1372.	0.5	8
31	Mismatch Negativity (MMN) in Freely-Moving Rats with Several Experimental Controls. PLoS ONE, 2014, 9, e110892.	2.5	70
32	Auditory Cortical and Hippocampal-System Mismatch Responses to Duration Deviants in Urethane-Anesthetized Rats. PLoS ONE, 2013, 8, e54624.	2.5	32
33	Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Frontiers in Behavioral Neuroscience, 2012, 6, 84.	2.0	62
34	Evoked local field potentials can explain temporal variation in blood oxygenation levelâ€dependent responses in rat somatosensory cortex. NMR in Biomedicine, 2011, 24, 209-215.	2.8	6
35	Memory-Based Mismatch Response to Frequency Changes in Rats. PLoS ONE, 2011, 6, e24208.	2.5	58
36	Hippocampal Ripple-Contingent Training Accelerates Trace Eyeblink Conditioning and Retards Extinction in Rabbits. Journal of Neuroscience, 2010, 30, 11486-11492.	3.6	33

Markku Penttonen

#	Article	IF	CITATIONS
37	Hippocampal theta-band activity and trace eyeblink conditioning in rabbits Behavioral Neuroscience, 2009, 123, 631-640.	1.2	21
38	Hippocampal theta (3–8Hz) activity during classical eyeblink conditioning in rabbits. Neurobiology of Learning and Memory, 2008, 90, 62-70.	1.9	39
39	Coupling between simultaneously recorded BOLD response and neuronal activity in the rat somatosensory cortex. NeuroImage, 2008, 39, 775-785.	4.2	117
40	Diazepam binding inhibitor overexpression in mice causes hydrocephalus, decreases plasticity in excitatory synapses and impairs hippocampus-dependent learning. Molecular and Cellular Neurosciences, 2007, 34, 199-208.	2.2	20
41	Contribution of a single CA3 neuron to network synchrony. NeuroImage, 2006, 31, 1222-1227.	4.2	7
42	Memory-based detection of rare sound feature combinations in anesthetized rats. NeuroReport, 2006, 17, 1561-1564.	1.2	47
43	Independent component analysis of neural populations from multielectrode field potential measurements. Journal of Neuroscience Methods, 2005, 145, 213-232.	2.5	9
44	Epileptic seizure detection: A nonlinear viewpoint. Computer Methods and Programs in Biomedicine, 2005, 79, 151-159.	4.7	93
45	Frequency bands and spatiotemporal dynamics of \hat{I}^2 burst stimulation induced afterdischarges in hippocampus in vivo. Neuroscience, 2005, 130, 239-247.	2.3	4
46	Electrophysiologic changes in the lateral and basal amygdaloid nuclei in temporal lobe epilepsy: an in vitro study in epileptic rats. Neuroscience, 2004, 124, 269-281.	2.3	9
47	Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems, 2003, 2, 145.	0.5	191
48	Hippocampus Retains the Periodicity of Gamma Stimulation In Vivo. Journal of Neurophysiology, 2002, 88, 2349-2354.	1.8	10
49	Effects of intracellular pH, blood, and tissue oxygen tension onT1Ïrelaxation in rat brain. Magnetic Resonance in Medicine, 2002, 48, 470-477.	3.0	70
50	Quantitative Assessment of the Balance between Oxygen Delivery and Consumption in the Rat Brain after Transient Ischemia with T2-BOLD Magnetic Resonance Imaging. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 262-270.	4.3	27
51	Use of spin echo T2 BOLD in assessment of cerebral misery perfusion at 1.5 T. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2001, 12, 32-39.	2.0	2
52	CerebralT1Ïrelaxation time increases immediately upon global ischemia in the rat independently of blood glucose and anoxic depolarization. Magnetic Resonance in Medicine, 2001, 46, 565-572.	3.0	45
53	Graded Reduction of Cerebral Blood Flow in Rat as Detected by the Nuclear Magnetic Resonance Relaxation Time T ₂ : A Theoretical and Experimental Approach. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 316-326.	4.3	54
54	Early Detection of Irreversible Cerebral Ischemia in the Rat Using Dispersion of the Magnetic Resonance Imaging Relaxation Time, T1Ï• Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1457-1466.	4.3	95

Markku Penttonen

#	Article	IF	CITATIONS
55	Ultra-slow oscillation (0.025 Hz) triggers hippocampal afterdischarges in Wistar rats. Neuroscience, 1999, 94, 735-743.	2.3	64
56	Feed-forward and feed-back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts. , 1998, 7, 437-450.		128
57	Gamma frequency oscillation in the hippocampus of the rat: intracellular analysisin vivo. European Journal of Neuroscience, 1998, 10, 718-728.	2.6	277
58	Auditory cortical event-related potentials to pitch deviances in rats. Neuroscience Letters, 1998, 248, 45-48.	2.1	94
59	Effects of rewarding electrical stimulation of lateral hypothalamus on classical conditioning of the nictitating membrane response. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1997, 21, 613-631.	4.8	1
60	Epileptic afterdischarge in the hippocampal–entorhinal system: current source density and unit studies. Neuroscience, 1997, 76, 1187-1203.	2.3	103
61	Termination of Epileptic Afterdischarge in the Hippocampus. Journal of Neuroscience, 1997, 17, 2567-2579.	3.6	130
62	Interneurons in the Hippocampal Dentate Gyrus: an In Vivo intracellular Study. European Journal of Neuroscience, 1997, 9, 573-588.	2.6	162
63	Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus, 1995, 5, 78-90.	1.9	362
64	Possible physiological role of the perforant path-CA1 projection. Hippocampus, 1995, 5, 141-146.	1.9	40
65	Hippocampal event-related potentials to pitch deviances in an auditory oddball situation in the cat: Experiment I. International Journal of Psychophysiology, 1995, 20, 33-39.	1.0	18
66	Behavioral and hippocampal evoked responses in an auditory oddball situation when an unconditioned stimulus is paired with deviant tones in the cat: Experiment II. International Journal of Psychophysiology, 1995, 20, 41-47.	1.0	13
67	Hippocampal evoked potentials to pitch deviances in an auditory oddball situation in the rabbit: no human mismatch-like dependence on standard stimuli. Neuroscience Letters, 1995, 185, 123-126.	2.1	20
68	A microcomputer system for controlling classical conditioning experiments. Behavior Research Methods, 1994, 26, 447-453.	1.3	2
69	Unilateral medial forebrain bundle activation selectively enhances conditioned orienting head turns and ipsilateral cingulate cortex evoked field responses in cats. Cognitive, Affective and Behavioral Neuroscience, 1994, 22, 22-30.	1.3	0
70	Bilaterally recorded multiple-unit activity of the cingulate cortex during head turning conditioning with unilateral medial forebrain bundle stimulation. Scandinavian Journal of Psychology, 1993, 34, 268-275.	1.5	0
71	Effects of lateralized US and CS presentations on conditioned head turning and bilateral cingulate cortex responses in cats. Behavioral and Neural Biology, 1993, 59, 9-17.	2.2	3
72	Asymmetries in Classically Conditioned Head Movements and Cingulate Cortex Slow Potentials in Cats. International Journal of Neuroscience, 1991, 61, 121-134.	1.6	2

#	Article	IF	CITATIONS
73	Conditioned orienting (alpha) and delayed behavioral and evoked neural responses during classical conditioning. Behavioural Brain Research, 1989, 34, 179-197.	2.2	6
74	Behavioral and neural characteristics of short-latency and long-latency conditioned responses in cats Behavioral Neuroscience, 1989, 103, 944-955.	1.2	9
75	A multi-componential methodology for exploring emotions in learning. , 0, , 6-36.		9