
Zachary N Warnken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2887349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing Drug Loading of Weakly Acidic Telmisartan in Amorphous Solid Dispersions through pH Modification during Hot-Melt Extrusion. Molecular Pharmaceutics, 2022, 19, 318-331.	4.6	5
2	Dry powders for inhalation containing monoclonal antibodies made by thin-film freeze-drying. International Journal of Pharmaceutics, 2022, 618, 121637.	5.2	21
3	Ternary Amorphous Solid Dispersions Containing a High-Viscosity Polymer and Mesoporous Silica Enhance Dissolution Performance. Molecular Pharmaceutics, 2021, 18, 198-213.	4.6	21
4	Development and evaluation of inhalable composite niclosamide-lysozyme particles: A broad-spectrum, patient-adaptable treatment for coronavirus infections and sequalae. PLoS ONE, 2021, 16, e0246803.	2.5	43
5	Next-Generation COVID-19 Vaccines Should Take Efficiency of Distribution into Consideration. AAPS PharmSciTech, 2021, 22, 126.	3.3	41
6	A Safety and Tolerability Study of Thin Film Freeze-Dried Tacrolimus for Local Pulmonary Drug Delivery in Human Subjects. Pharmaceutics, 2021, 13, 717.	4.5	6
7	Novel formulations and drug delivery systems to administer biological solids. Advanced Drug Delivery Reviews, 2021, 172, 183-210.	13.7	25
8	Niclosamide inhalation powder made by thin-film freezing: Multi-dose tolerability and exposure in rats and pharmacokinetics in hamsters. International Journal of Pharmaceutics, 2021, 603, 120701.	5.2	30
9	Specific mechanical energy – An essential parameter in the processing of amorphous solid dispersions. Advanced Drug Delivery Reviews, 2021, 173, 374-393.	13.7	18
10	Innovating on Inhaled Bioequivalence: A Critical Analysis of the Current Limitations, Potential Solutions and Stakeholders of the Process. Pharmaceutics, 2021, 13, 1051.	4.5	2
11	Development of PEGylated chitosan/CRISPR-Cas9 dry powders for pulmonary delivery via thin-film freeze-drying. International Journal of Pharmaceutics, 2021, 605, 120831.	5.2	7
12	The effect of drug loading on the properties of abiraterone–hydroxypropyl beta cyclodextrin solid dispersions processed by solvent free KinetiSol® technology. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165, 52-65.	4.3	11
13	Selective Laser Sintering of a Photosensitive Drug: Impact of Processing and Formulation Parameters on Degradation, Solid State, and Quality of 3D-Printed Dosage Forms. Molecular Pharmaceutics, 2021, 18, 3894-3908.	4.6	18
14	In vivo pharmacokinetic study of remdesivir dry powder for inhalation in hamsters. International Journal of Pharmaceutics: X, 2021, 3, 100073.	1.6	20
15	Amorphous Solid Dispersions and the Contribution of Nanoparticles to In Vitro Dissolution and In Vivo Testing: Niclosamide as a Case Study. Pharmaceutics, 2021, 13, 97.	4.5	36
16	Manufacturing Stable Bacteriophage Powders by Including Buffer System in Formulations and Using Thin Film Freeze-drying Technology. Pharmaceutical Research, 2021, 38, 1793-1804.	3.5	7
17	Nose-to-Brain Drug Delivery Enabled by Nanocarriers. Neuromethods, 2021, , 209-233.	0.3	0
18	Development of an Excipient-Free Peptide Dry Powder Inhalation for the Treatment of Pulmonary Fibrosis. Molecular Pharmaceutics, 2020, 17, 632-644.	4.6	13

#	Article	IF	CITATIONS
19	The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation. AAPS PharmSciTech, 2020, 21, 225.	3.3	240
20	Inhaled nanoparticles–An updated review. International Journal of Pharmaceutics, 2020, 587, 119671.	5.2	51
21	Amorphous solid dispersion dry powder for pulmonary drug delivery: Advantages and challenges. International Journal of Pharmaceutics, 2020, 587, 119711.	5.2	27
22	Development of Remdesivir as a Dry Powder for Inhalation by Thin Film Freezing. Pharmaceutics, 2020, 12, 1002.	4.5	86
23	Bioavailability Improvement of Carbamazepine via Oral Administration of Modified-Release Amorphous Solid Dispersions in Rats. Pharmaceutics, 2020, 12, 1023.	4.5	14
24	Immunogenicity of Antigen Adjuvanted with ASO4 and Its Deposition in the Upper Respiratory Tract after Intranasal Administration. Molecular Pharmaceutics, 2020, 17, 3259-3269.	4.6	10
25	Thermally Conductive Excipient Expands KinetiSol® Processing Capabilities. AAPS PharmSciTech, 2020, 21, 319.	3.3	14
26	<i>In Vitro</i> and <i>In Vivo</i> Behaviors of KinetiSol and Spray-Dried Amorphous Solid Dispersions of a Weakly Basic Drug and Ionic Polymer. Molecular Pharmaceutics, 2020, 17, 2789-2808.	4.6	23
27	Complex Drug Delivery Systems: Controlling Transdermal Permeation Rates with Multiple Active Pharmaceutical Ingredients. AAPS PharmSciTech, 2020, 21, 165.	3.3	9
28	Using thin film freezing to minimize excipients in inhalable tacrolimus dry powder formulations. International Journal of Pharmaceutics, 2020, 586, 119490.	5.2	39
29	Just how prevalent are peptide therapeutic products? A critical review. International Journal of Pharmaceutics, 2020, 587, 119491.	5.2	28
30	How broadly can poly(urethane)-based implants be applied to drugs of varied properties?. International Journal of Pharmaceutics, 2019, 568, 118550.	5.2	9
31	Formulation Composition and Process Affect Counterion for CSP7 Peptide. Pharmaceutics, 2019, 11, 498.	4.5	7
32	Can drug release rate from implants be tailored using poly(urethane) mixtures?. International Journal of Pharmaceutics, 2019, 557, 390-401.	5.2	12
33	Homogeneity of amorphous solid dispersions – an example with KinetiSol [®] . Drug Development and Industrial Pharmacy, 2019, 45, 724-735.	2.0	17
34	Influence of mechanical and thermal energy on nifedipine amorphous solid dispersions prepared by hot melt extrusion: Preparation and physical stability. International Journal of Pharmaceutics, 2019, 561, 324-334.	5.2	44
35	Enhanced Aerosolization of High Potency Nanoaggregates of Voriconazole by Dry Powder Inhalation. Molecular Pharmaceutics, 2019, 16, 1799-1812.	4.6	33
36	Delivery Technologies for Orally Inhaled Products: an Update. AAPS PharmSciTech, 2019, 20, 117.	3.3	36

#	Article	IF	CITATIONS
37	Caveolin-1–derived peptide limits development of pulmonary fibrosis. Science Translational Medicine, 2019, 11, .	12.4	58
38	Solid-state NMR analysis of crystalline and amorphous Indomethacin: An experimental protocol for full resonance assignments. Journal of Pharmaceutical and Biomedical Analysis, 2019, 165, 47-55.	2.8	29
39	Characterization of amorphous solid dispersions: An update. Journal of Drug Delivery Science and Technology, 2019, 50, 113-124.	3.0	88
40	Personalized Medicine in Nasal Delivery: The Use of Patient-Specific Administration Parameters To Improve Nasal Drug Targeting Using 3D-Printed Nasal Replica Casts. Molecular Pharmaceutics, 2018, 15, 1392-1402.	4.6	57
41	Sustained-release amorphous solid dispersions. Drug Delivery and Translational Research, 2018, 8, 1714-1725.	5.8	27
42	InÂVitro–InÂVivo Correlations of Carbamazepine Nanodispersions for Application in Formulation Development. Journal of Pharmaceutical Sciences, 2018, 107, 453-465.	3.3	14
43	Paul B. Myrdal, Ph.D. (June 25, 1967–May 19, 2018). AAPS PharmSciTech, 2018, 19, 2449-2449.	3.3	1
44	Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. Journal of Controlled Release, 2018, 292, 111-118.	9.9	42
45	Nebulization of single-chain tissue-type and single-chain urokinase plasminogen activator for treatment of inhalational smoke-induced acute lung injury. Journal of Drug Delivery Science and Technology, 2018, 46, 19-27.	3.0	3
46	A modified USP induction port to characterize nasal spray plume geometry and predict turbinate deposition under flow. International Journal of Pharmaceutics, 2018, 548, 305-313.	5.2	18
47	Sustained Release Drug Delivery Applications of Polyurethanes. Pharmaceutics, 2018, 10, 55.	4.5	61
48	A Repurposed Drug for Brain Cancer: Enhanced Atovaquone Amorphous Solid Dispersion by Combining a Spontaneously Emulsifying Component with a Polymer Carrier. Pharmaceutics, 2018, 10, 60.	4.5	22
49	Predicting physical stability of ternary amorphous solid dispersions using specific mechanical energy in a hot melt extrusion process. International Journal of Pharmaceutics, 2018, 548, 571-585.	5.2	47
50	Mucoadhesive amorphous solid dispersions for sustained release of poorly water soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 157-167.	4.3	22
51	Processing thermally labile drugs by hot-melt extrusion: The lesson with gliclazide. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 56-67.	4.3	59
52	Modified release itraconazole amorphous solid dispersion to treat Aspergillus fumigatus: importance of the animal model selection. Drug Development and Industrial Pharmacy, 2017, 43, 264-274.	2.0	6
53	Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole. Drug Development and Industrial Pharmacy, 2017, 43, 797-811.	2.0	61
54	Route-Specific Challenges in the Delivery of Poorly Water-Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, 2016, , 1-39.	0.6	4

#	Article	IF	CITATIONS
55	Influence of process parameters on the preparation of pharmaceutical films by electrostatic powder deposition. International Journal of Pharmaceutics, 2016, 515, 94-103.	5.2	8
56	Formulation and device design to increase nose to brain drug delivery. Journal of Drug Delivery Science and Technology, 2016, 35, 213-222.	3.0	78
57	Use of Polyvinyl Alcohol as a Solubility-Enhancing Polymer for Poorly Water Soluble Drug Delivery (Part 1). AAPS PharmSciTech, 2016, 17, 167-179.	3.3	71
58	Enabling thermal processing of ritonavir–polyvinyl alcohol amorphous solid dispersions by KinetiSol® Dispersing. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 101, 72-81.	4.3	37
59	Use of Polyvinyl Alcohol as a Solubility Enhancing Polymer for Poorly Water-Soluble Drug Delivery (Part 2). AAPS PharmSciTech, 2016, 17, 180-190.	3.3	26
60	A New Extrudable Form of Hypromellose: AFFINISOLâ,,¢ HPMC HME. AAPS PharmSciTech, 2016, 17, 106-119.	3.3	66
61	Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions. AAPS PharmSciTech, 2016, 17, 120-132.	3.3	51
62	Challenges and Strategies in Thermal Processing of Amorphous Solid Dispersions: A Review. AAPS PharmSciTech, 2016, 17, 43-55.	3.3	108
63	How Do You Use AAPS PharmSciTech?. AAPS PharmSciTech, 2015, 16, 1-2.	3.3	8
64	Formulation of a novel fixed dose combination of salmeterol xinafoate and mometasone furoate for inhaled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 132-142.	4.3	11
65	Electrostatic powder deposition to prepare films for drug delivery. Journal of Drug Delivery Science and Technology, 2015, 30, 501-510.	3.0	12
66	Hot-melt extrusion – basic principles and pharmaceutical applications. Drug Development and Industrial Pharmacy, 2014, 40, 1133-1155.	2.0	115
67	Dissolution Enhancement of Itraconazole by Hot-Melt Extrusion Alone and the Combination of Hot-Melt Extrusion and Rapid Freezing—Effect of Formulation and Processing Variables. Molecular Pharmaceutics, 2014, 11, 186-196.	4.6	33
68	The impact of pulmonary diseases on the fate of inhaled medicines—A review. International Journal of Pharmaceutics, 2014, 461, 112-128.	5.2	46
69	Solid Lipid Nanoparticle Formulations of Docetaxel Prepared with High Melting Point Triglycerides: <i>In Vitro</i> and <i>in Vivo</i> Evaluation. Molecular Pharmaceutics, 2014, 11, 1239-1249.	4.6	90
70	Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery. Colloids and Surfaces B: Biointerfaces, 2014, 122, 38-45.	5.0	52
71	In Vitro and In Vivo Performance of Dry Powder Inhalation Formulations: Comparison of Particles Prepared by Thin Film Freezing and Micronization. AAPS PharmSciTech, 2014, 15, 981-993.	3.3	38
72	Characterization and pharmacokinetic analysis of crystalline versus amorphous rapamycin dry powder via pulmonary administration in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 136-147.	4.3	39

#	Article	IF	CITATIONS
73	Respirable Low-Density Microparticles Formed In Situ from Aerosolized Brittle Matrices. Pharmaceutical Research, 2013, 30, 813-825.	3.5	50
74	Nebulization of mycophenolate mofetil inhalation suspension in rats: Comparison with oral and pulmonary administration of Cellcept®. International Journal of Pharmaceutics, 2013, 441, 19-29.	5.2	7
75	Enhancing bioavailability through thermal processing. International Journal of Pharmaceutics, 2013, 450, 185-196.	5.2	36
76	Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. International Journal of Pharmaceutics, 2013, 453, 157-166.	5.2	236
77	Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 534-544.	4.3	96
78	Influence of Formulation and Processing Variables on Properties of Itraconazole Nanoparticles Made by Advanced Evaporative Precipitation into Aqueous Solution. AAPS PharmSciTech, 2012, 13, 949-960.	3.3	11
79	Transetherification-mediated E-ring opening and stereoselective "Red-Ox―modification of furostan. Steroids, 2012, 77, 276-281.	1.8	10
80	Dry powder insufflation of crystalline and amorphous voriconazole formulations produced by thin film freezing to mice. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 600-608.	4.3	58
81	Effect of process variables on morphology and aerodynamic properties of voriconazole formulations produced by thin film freezing. International Journal of Pharmaceutics, 2012, 429, 46-57.	5.2	27
82	Surfactants: their critical role in enhancing drug delivery to the lungs. Therapeutic Delivery, 2011, 2, 623-641.	2.2	28
83	Preclinical evaluation of tacrolimus colloidal dispersion for inhalation. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 207-215.	4.3	14
84	Plasma deposited stability enhancement coating for amorphous ketoprofen. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 67-74.	4.3	8
85	Nanoparticulate systems for oral drug delivery to the colon. International Journal of Nanotechnology, 2011, 8, 4.	0.2	7
86	Influence of particle size on regional lung deposition – What evidence is there?. International Journal of Pharmaceutics, 2011, 406, 1-10.	5.2	441
87	Dissolution Enhancement of a Drug Exhibiting Thermal and Acidic Decomposition Characteristics by Fusion Processing: A Comparative Study of Hot Melt Extrusion and KinetiSol® Dispersing. AAPS PharmSciTech, 2010, 11, 760-774.	3.3	71
88	Characterization and pharmacokinetic analysis of tacrolimus dispersion for nebulization in a lung transplanted rodent model. International Journal of Pharmaceutics, 2010, 384, 46-52.	5.2	24
89	In vitro characterization and pharmacokinetics in mice following pulmonary delivery of itraconazole as cyclodextrin solubilized solution. European Journal of Pharmaceutical Sciences, 2010, 39, 336-347.	4.0	44
90	Applications of KinetiSol® Dispersing for the production of plasticizer free amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 2010, 40, 179-187.	4.0	61

#	Article	IF	CITATIONS
91	Fusion processing of itraconazole solid dispersions by kinetisol® dispersing: A comparative study to hot melt extrusion. Journal of Pharmaceutical Sciences, 2010, 99, 1239-1253.	3.3	64
92	Templated Open Flocs of Anisotropic Particles for Pulmonary Delivery with Pressurized Metered Dose Inhalers. Journal of Pharmaceutical Sciences, 2010, 99, 3150-3165.	3.3	22
93	Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 340-351.	4.3	127
94	Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 33-41.	4.3	119
95	Inhaled Voriconazole for Prevention of Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2009, 53, 2613-2615.	3.2	41
96	Templated Open Flocs of Nanorods for Enhanced Pulmonary Delivery with Pressurized Metered Dose Inhalers. Pharmaceutical Research, 2009, 26, 101-117.	3.5	41
97	Dose tolerability of chronically inhaled voriconazole solution in rodents. International Journal of Pharmaceutics, 2009, 379, 25-31.	5.2	18
98	Characterization and pharmacokinetic analysis of aerosolized aqueous voriconazole solution. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 199-205.	4.3	50
99	Highly Supersaturated Solutions from Dissolution of Amorphous Itraconazole Microparticles at pH 6.8. Molecular Pharmaceutics, 2009, 6, 375-385.	4.6	36
100	Effect of Stabilizer on the Maximum Degree and Extent of Supersaturation and Oral Absorption of Tacrolimus Made By Ultra-Rapid Freezing. Pharmaceutical Research, 2008, 25, 167-175.	3.5	95
101	Formation of Stable Submicron Protein Particles by Thin Film Freezing. Pharmaceutical Research, 2008, 25, 1334-1346.	3.5	80
102	Targeted Intestinal Delivery of Supersaturated Itraconazole for Improved Oral Absorption. Pharmaceutical Research, 2008, 25, 1450-1459.	3.5	125
103	Flocculated Amorphous Nanoparticles for Highly Supersaturated Solutions. Pharmaceutical Research, 2008, 25, 2477-2487.	3.5	53
104	Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. Journal of Pharmaceutical Sciences, 2008, 97, 4915-4933.	3.3	66
105	Inhaled nanoparticles—A current review. International Journal of Pharmaceutics, 2008, 356, 239-247.	5.2	560
106	High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. International Journal of Pharmaceutics, 2008, 361, 177-188.	5.2	106
107	Amorphous Compositions Using Concentration Enhancing Polymers for Improved Bioavailability of Itraconazole. Molecular Pharmaceutics, 2008, 5, 968-980.	4.6	161
108	Drug delivery strategies for improved azole antifungal action. Expert Opinion on Drug Delivery, 2008, 5, 1199-1216.	5.0	57

#	Article	IF	CITATIONS
109	Highly Supersaturated Solutions of Amorphous Drugs Approaching Predictions from Configurational Thermodynamic Properties. Journal of Physical Chemistry B, 2008, 112, 16675-16681.	2.6	43
110	Nebulization of nanoparticulate amorphous or crystalline tacrolimus – Single-dose pharmacokinetics study in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 1057-1066.	4.3	46
111	Dissolution Rates and Supersaturation Behavior of Amorphous Repaglinide Particles Produced by Controlled Precipitation. Journal of Biomedical Nanotechnology, 2007, 3, 18-27.	1.1	15
112	Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 57-67.	4.3	104
113	Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 163-174.	4.3	43
114	Morphology of protein particles produced by spray freezing of concentrated solutions. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 149-162.	4.3	52
115	Design of Potent Amorphous Drug Nanoparticles for Rapid Generation of Highly Supersaturated Media. Molecular Pharmaceutics, 2007, 4, 782-793.	4.6	141
116	Hot-Melt Extrusion for Enhanced Delivery of Drug Particles. Journal of Pharmaceutical Sciences, 2007, 96, 361-376.	3.3	127
117	Evaluation of the USP dissolution test method A for enteric-coated articles by planar laser-induced fluorescence. International Journal of Pharmaceutics, 2007, 330, 61-72.	5.2	13
118	Solid dispersions of itraconazole and enteric polymers made by ultra-rapid freezing. International Journal of Pharmaceutics, 2007, 336, 122-132.	5.2	84
119	Murine airway histology and intracellular uptake of inhaled amorphous itraconazole. International Journal of Pharmaceutics, 2007, 338, 219-224.	5.2	27
120	Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals. Journal of Controlled Release, 2007, 117, 351-359.	9.9	65
121	Aerosolized nanostructured itraconazole as prophylaxis against invasive pulmonary aspergillosis. Journal of Infection, 2007, 55, 68-74.	3.3	36
122	Drug Nanoparticles by Antisolvent Precipitation:Â Mixing Energy versus Surfactant Stabilization. Langmuir, 2006, 22, 8951-8959.	3.5	346
123	Single dose and multiple dose studies of itraconazole nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 95-102.	4.3	83
124	Cryogenic liquids, nanoparticles, and microencapsulation. International Journal of Pharmaceutics, 2006, 324, 43-50.	5.2	35
125	Targeted High Lung Concentrations of Itraconazole Using Nebulized Dispersions in a Murine Model. Pharmaceutical Research, 2006, 23, 901-911.	3.5	64
126	Spray freezing into liquid versus spray-freeze drying: Influence of atomization on protein aggregation and biological activity. European Journal of Pharmaceutical Sciences, 2006, 27, 9-18.	4.0	102

#	Article	IF	CITATIONS
127	Ketoprofen nanoparticle gels formed by evaporative precipitation into aqueous solution. AICHE Journal, 2006, 52, 2428-2435.	3.6	16
128	In Vivo Efficacy of Aerosolized Nanostructured ItraconazoleFormulations for Prevention of Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 1552-1554.	3.2	45
129	Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution. International Journal of Pharmaceutics, 2005, 302, 113-124.	5.2	51
130	Encapsulation of protein nanoparticles into uniform-sized microspheres formed in a spinning oil film. AAPS PharmSciTech, 2005, 6, E605-E617.	3.3	40
131	Uniform Encapsulation of Stable Protein Nanoparticles Produced by Spray Freezing for the Reduction of Burst Release. Journal of Pharmaceutical Sciences, 2005, 94, 56-69.	3.3	47
132	Comparison of powder produced by evaporative precipitation into aqueous solution (EPAS) and spray freezing into liquid (SFL) technologies using novel Z-contrast STEM and complimentary techniques. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 60, 81-89.	4.3	37
133	Rapid Dissolution of Highâ€Potency Danazol Particles Produced by Evaporative Precipitation into Aqueous Solution. Journal of Pharmaceutical Sciences, 2004, 93, 1867-1878.	3.3	33
134	Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. International Journal of Pharmaceutics, 2004, 271, 145-154.	5.2	80
135	Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 529-537.	4.3	70
136	Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology: spray-freezing into liquid with atmospheric freeze-drying. Pharmaceutical Research, 2003, 20, 485-493.	3.5	89
137	Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems. European Journal of Pharmaceutical Sciences, 2003, 20, 295-303.	4.0	125
138	Micronized powders of a poorly water soluble drug produced by a spray-freezing into liquid-emulsion process. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 55, 161-172.	4.3	57
139	Influence of hydroxypropyl methylcellulose polymer on in vitro and in vivo performance of controlled release tablets containing alprazolam. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 461-468.	4.3	21
140	Physical Stability of Micronized Powders Produced by Spray-Freezing into Liquid (SFL) to Enhance the Dissolution of an Insoluble Drug. Pharmaceutical Development and Technology, 2003, 8, 187-197.	2.4	21
141	Long-term stability of heat–humidity cured cellulose acetate phthalate coated beads. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53, 167-173.	4.3	19
142	Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54, 221-228.	4.3	80
143	A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54, 271-280.	4.3	127
144	Properties of heat-humidity cured cellulose acetate phthalate free films. European Journal of Pharmaceutical Sciences, 2002, 17, 31-41.	4.0	18

#	Article	IF	CITATIONS
145	Enhanced drug dissolution using evaporative precipitation into aqueous solution. International Journal of Pharmaceutics, 2002, 243, 17-31.	5.2	159
146	Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. International Journal of Pharmaceutics, 2002, 242, 3-14.	5.2	152
147	A novel particle engineering technology: spray-freezing into liquid. International Journal of Pharmaceutics, 2002, 242, 93-100.	5.2	127
148	Investigation of Excipient Type and Level on Drug Release from Controlled Release Tablets Containing HPMC. Pharmaceutical Development and Technology, 2002, 7, 181-193.	2.4	68
149	Improvement of dissolution rates of poorly water soluble APIs using novel spray freezing into liquid technology. Pharmaceutical Research, 2002, 19, 1278-1284.	3.5	107
150	Solution-Based Particle Formation of Pharmaceutical Powders by Supercritical or Compressed Fluid Co2and Cryogenic Spray-Freezing Technologies. Drug Development and Industrial Pharmacy, 2001, 27, 1003-1015.	2.0	133
151	The Influence of Plasticizer on Heat-Humidity Curing of Cellulose Acetate Phthalate Coated Beads. Pharmaceutical Development and Technology, 2001, 6, 607-619.	2.4	14
152	Moisture Uptake and Its Influence on Pressurized Metered-Dose Inhalers. Pharmaceutical Development and Technology, 2000, 5, 153-162.	2.4	21
153	Influence of processing and curing conditions on beads coated with an aqueous dispersion of cellulose acetate phthalate. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 49, 243-252.	4.3	53
154	Influence of Micronization Method on the Performance of a Suspension Triamcinolone Acetonide Pressurized Metered-Dose Inhaler Formulation. Pharmaceutical Development and Technology, 1999, 4, 167-179.	2.4	42
155	Formulation of a protein with propellant HFA 134a for aerosol delivery. European Journal of Pharmaceutical Sciences, 1999, 7, 137-144.	4.0	32
156	Influence of formulation technique for hydroxypropyl-β-cyclodextrin on the stability of aspirin in HFA 134a. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 47, 145-152.	4.3	13
157	Application of co-grinding to formulate a model pMDI suspension. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 48, 131-140.	4.3	14
158	Influence of formulation additives on the vapor pressure of hydrofluoroalkane propellants. International Journal of Pharmaceutics, 1998, 166, 99-103.	5.2	30
159	Investigation of a pMDI system containing chitosan microspheres and P134a. International Journal of Pharmaceutics, 1998, 174, 209-222.	5.2	41
160	Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 46, 355-360.	4.3	147
161	A study of an epoxy aerosol can lining exposed to hydrofluoroalkane propellants. European Journal of Pharmaceutics and Biopharmaceutics, 1997, 44, 195-203.	4.3	4
162	Influence of metering chamber volume and water level on the emitted dose of a suspension-based pMDI containing propellant 134a. Pharmaceutical Research, 1997, 14, 438-443.	3.5	15

#	Article	IF	CITATIONS
163	Compaction Properties of Microcrystalline Cellulose and Sodium Sulfathiazole in Combination with Talc or Magnesium Stearate. Journal of Pharmaceutical Sciences, 1989, 78, 1025-1034.	3.3	17