MarÃ-a Criado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2887086/publications.pdf

Version: 2024-02-01

136950 189892 4,386 57 32 50 h-index citations g-index papers 57 57 57 3038 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reactivation of alkali-activated materials made up of fly ashes from a coal power plant. Cleaner Materials, 2022, 3, 100043.	5.1	5
2	Influence of the Fly Ash Content on the Fresh and Hardened Properties of Alkali-Activated Slag Pastes with Admixtures. Materials, 2022, 15, 992.	2.9	8
3	Methods for characterising the steel–concrete interface to enhance understanding of reinforcement corrosion: a critical review by RILEM TC 262-SCI. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	7
4	Durability of UHPFRC functionalised with nanoadditives due to synergies in the action of sulphate and chloride in cracked and uncracked states. Materiales De Construccion, 2021, 71, e264.	0.7	4
5	Polysiloxane Hybrids via Sol-Gel Process: Effect of Temperature on Network Formation. Coatings, 2020, 10, 677.	2.6	3
6	Li conductivity in Li1+xTi2-xAlx(PO4)3 (0.3≤â‰Ф.7) ceramics prepared from sol-gel precursors. Journal of Alloys and Compounds, 2020, 844, 156051.	5.5	10
7	Precipitation mechanism of soluble phosphates in mortar. European Journal of Environmental and Civil Engineering, 2019, 23, 1265-1274.	2.1	5
8	The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	3.1	98
9	Alkali-activated materials obtained from asphalt fillers and fluorescent lamps wastes. Journal of Cleaner Production, 2019, 215, 343-353.	9.3	11
10	Corrosion behavior of duplex stainless steel reinforcement in ternary binder concrete exposed to natural chloride penetration. Construction and Building Materials, 2019, 199, 385-395.	7.2	38
11	Slag-Based Cements That Resist Damage Induced by Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 5067-5075.	6.7	39
12	Influence of slag composition on the stability of steel in alkali-activated cementitious materials. Journal of Materials Science, 2018, 53, 5016-5035.	3.7	45
13	Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements. Sustainability, 2018, 10, 4709.	3.2	47
14	Alkali Activated Slag Mortars Provide High Resistance to Chloride-Induced Corrosion of Steel. Frontiers in Materials, 2018, 5, .	2.4	50
15	The steel–concrete interface. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	170
16	Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes. Cement and Concrete Research, 2017, 100, 385-397.	11.0	148
17	Alternative inorganic binders based on alkali-activated metallurgical slags. , 2017, , 185-220.		15
18	Microstructural and Mechanical Properties of Alkali Activated Colombian Raw Materials. Materials, 2016, 9, 158.	2.9	109

#	Article	IF	CITATIONS
19	Corrosion behaviour of coated steel rebars in carbonated and chloride-contaminated alkali-activated fly ash mortar. Progress in Organic Coatings, 2016, 99, 11-22.	3.9	28
20	Corrosion behaviour of hybrid sol-gel coated steel embedded in carbonated Portland and fly ash mortars contaminated with chlorides. Advances in Materials and Processing Technologies, 2016, 2, 557-565.	1.4	1
21	The corrosion behaviour of reinforced steel embedded in alkali-activated mortar., 2015,, 333-372.		7
22	Steel corrosion in simulated carbonated concrete pore solution its protection using sol–gel coatings. Progress in Organic Coatings, 2015, 88, 228-236.	3.9	38
23	Corrosion inhibition mechanism of phosphates for early-age reinforced mortar in the presence of chlorides. Cement and Concrete Composites, 2015, 61, 1-6.	10.7	72
24	A Raman spectroscopy study of steel corrosion products in activated fly ash mortar containing chlorides. Construction and Building Materials, 2015, 96, 383-390.	7.2	37
25	Low energy SIMS characterization of passive oxide films formed on a low-nickel stainless steel in alkaline media. Applied Surface Science, 2014, 288, 423-429.	6.1	37
26	Polymerization of hybrid organic–inorganic materials from several silicon compounds followed by TGA/DTA, FTIR and NMR techniques. Progress in Organic Coatings, 2014, 77, 880-891.	3.9	62
27	Steel protection using sol–gel coatings in simulated concrete pore solution contaminated with chloride. Surface and Coatings Technology, 2014, 258, 485-494.	4.8	27
28	Corrosion of Steel Embedded in Fly Ash Mortar Using a Transmission Line Model. Journal of the Electrochemical Society, 2014, 161, E3158-E3164.	2.9	8
29	Corrosion behaviour of a Low Ni austenitic stainless steel in carbonated chloride-polluted alkali-activated fly ash mortar. Cement and Concrete Research, 2014, 55, 49-58.	11.0	41
30	Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides. Electrochimica Acta, 2014, 129, 160-170.	5.2	129
31	Effect of recycled glass fiber on the corrosion behavior of reinforced mortar. Construction and Building Materials, 2014, 64, 261-269.	7.2	16
32	Durability and Testing – Degradation via Mass Transport. RILEM State-of-the-Art Reports, 2014, , 223-276.	0.7	12
33	Comparative study of three sodium phosphates as corrosion inhibitors for steel reinforcements. Cement and Concrete Composites, 2013, 43, 31-38.	10.7	71
34	Corrosion rate and corrosion product characterisation using Raman spectroscopy for steel embedded in chloride polluted fly ash mortar. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 372-380.	1.5	32
35	Corrosion Behaviour of a New Low-Nickel Stainless Steel Reinforcement: A Study in Simulated Pore Solutions and in Fly Ash Mortars. International Journal of Corrosion, 2012, 2012, 1-8.	1.1	4
36	Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-activated fly ash mortar. Construction and Building Materials, 2012, 35, 30-37.	7.2	38

#	Article	IF	Citations
37	Effect of relative humidity on the reaction products of alkali activated fly ash. Journal of the European Ceramic Society, 2012, 32, 2799-2807.	5.7	58
38	Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 2011, 33, 644-652.	10.7	65
39	Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution. Construction and Building Materials, 2011, 25, 4190-4196.	7.2	58
40	Methods for analysing nanocoatings and ultra-thin films. , 2011, , 131-156.		1
41	Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description. Fuel, 2010, 89, 3185-3192.	6.4	139
42	Low-nickel stainless steel passive film in simulated concrete pore solution: A SIMS study. Applied Surface Science, 2010, 256, 6139-6143.	6.1	46
43	Effect of sodium sulfate on the alkali activation of fly ash. Cement and Concrete Composites, 2010, 32, 589-594.	10.7	67
44	A prediction study of hydroxyapatite entrapment ability in concrete. Construction and Building Materials, 2010, 24, 2646-2649.	7.2	32
45	Copper deterioration: causes, diagnosis and risk minimisation. International Materials Reviews, 2010, 55, 99-127.	19.3	42
46	Alkali activated fly ash: effect of admixtures on paste rheology. Rheologica Acta, 2009, 48, 447-455.	2.4	135
47	Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey. Microporous and Mesoporous Materials, 2008, 109, 525-534.	4.4	200
48	An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cement and Concrete Research, 2007, 37, 671-679.	11.0	394
49	Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Microporous and Mesoporous Materials, 2007, 106, 180-191.	4.4	500
50	Activaci \tilde{A}^3 n alcalina de cenizas volantes. Estudio comparativo entre activadores s \tilde{A}^3 dicos y pot \tilde{A}_1 sicos. Materiales De Construccion, 2006, 56, .	0.7	18
51	Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel, 2005, 84, 2048-2054.	6.4	456
52	Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and Concrete Research, 2005, 35, 1204-1209.	11.0	601
53	"Geopolimeros": una única base quÃmica y diferentes microestructuras. Materiales De Construccion, 2004, 54, 77-91.	0.7	57
54	Corrosion Behavior of Hybrid Organic-Inorganic Coated Steel in Simulated Concrete Pore Solution. Solid State Phenomena, 0, 227, 199-202.	0.3	2

MarÃa Criado

#	Article	IF	CITATIONS
55	Steel corrosion in reinforced alkali-activated materials. RILEM Technical Letters, 0, 2, 33-39.	0.0	42
56	Aspectos cinéticos de la corrosión y fenómenos de pasividad. , 0, , 11-32.		1
57	Análisis de dos casos de corrosión: Acero inoxidable en una industria generadora de energÃa y planchas calcográficas de cobre. , 0, , 131-155.		O