List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886994/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology, 1992, 38, 335-378.	5.7	821
2	The rubrospinal tract. II. Facilitation of interneuronal transmission in reflex paths to motoneurones. Experimental Brain Research, 1969, 7, 365-91.	1.5	426
3	Direct and indirect activation of nerve cells by electrical pulses applied extracellularly Journal of Physiology, 1976, 258, 33-61.	2.9	238
4	An interneuronal relay for group I and II muscle afferents in the midlumbar segments of the cat spinal cord Journal of Physiology, 1987, 389, 647-674.	2.9	199
5	Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. Journal of Physiology, 2001, 533, 31-40.	2.9	196
6	Spinal interneuronal networks in the cat: Elementary components. Brain Research Reviews, 2008, 57, 46-55.	9.0	164
7	The rubrospinal tract. I. Effects on alpha-motoneurones innervating hindlimb muscles in cats. Experimental Brain Research, 1969, 7, 344-64.	1.5	162
8	How Can Corticospinal Tract Neurons Contribute to Ipsilateral Movements? A Question With Implications for Recovery of Motor Functions. Neuroscientist, 2006, 12, 67-79.	3.5	156
9	Field potentials generated by group II muscle afferents in the middle lumbar segments of the cat spinal cord Journal of Physiology, 1987, 385, 393-413.	2.9	125
10	Neuronal Basis of Crossed Actions from the Reticular Formation on Feline Hindlimb Motoneurons. Journal of Neuroscience, 2003, 23, 1867-1878.	3.6	124
11	Effects of 4-aminopyridine on transmission in excitatory and inhibitory synapses in the spinal cord. Brain Research, 1977, 136, 387-392.	2.2	113
12	Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions. European Journal of Neuroscience, 2003, 18, 2273-2284.	2.6	105
13	Effects of monoamines on interneurons in four spinal reflex pathways from group I and/or group II muscle afferents. European Journal of Neuroscience, 2000, 12, 701-714.	2.6	101
14	Contralaterally projecting lamina VIII interneurones in middle lumbar segments in the cat. Brain Research, 1990, 535, 327-330.	2.2	83
15	Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man?. Brain Research Reviews, 2002, 40, 19-28.	9.0	83
16	Pattern of â€~nonâ€reciprocal' inhibition of motoneurones by impulses in group la muscle spindle afferents in the cat. Journal of Physiology, 1981, 316, 393-409.	2.9	79
17	Functional subdivision of feline spinal interneurons in reflex pathways from group Ib and II muscle afferents; an update. European Journal of Neuroscience, 2010, 32, 881-893.	2.6	76
18	Evidence for longâ€lasting subcortical facilitation by transcranial direct current stimulation in the cat. Journal of Physiology, 2013, 591, 3381-3399.	2.9	66

#	Article	IF	CITATIONS
19	Oligosynaptic excitation of motoneurones by impulses in group Ia muscle spindle afferents in the cat. Journal of Physiology, 1981, 316, 411-425.	2.9	65
20	Commissural interneurons with input from group I and II muscle afferents in feline lumbar segments: neurotransmitters, projections and target cells. Journal of Physiology, 2009, 587, 401-418.	2.9	61
21	The actions of monoamines and distribution of noradrenergic and serotoninergic contacts on different subpopulations of commissural interneurons in the cat spinal cord. European Journal of Neuroscience, 2004, 19, 1305-1316.	2.6	60
22	Modulation of Responses of Four Types of Feline Ascending Tract Neurons by Serotonin and Noradrenaline. European Journal of Neuroscience, 1997, 9, 1375-1387.	2.6	56
23	Differential Projections of Excitatory and Inhibitory Dorsal Horn Interneurons Relaying Information from Group II Muscle Afferents in the Cat Spinal Cord. Journal of Neuroscience, 2006, 26, 2871-2880.	3.6	56
24	Interneurones mediating presynaptic inhibition of group II muscle afferents in the cat spinal cord Journal of Physiology, 1995, 483, 461-471.	2.9	50
25	Subcortical effects of transcranial direct current stimulation in the rat. Journal of Physiology, 2013, 591, 4027-4042.	2.9	50
26	Chapter 15 Interactions between pathways controlling posture and gait at the level of spinal interneurones in the cat. Progress in Brain Research, 1993, 97, 161-171.	1.4	49
27	Relative contribution of la inhibitory interneurones to inhibition of feline contralateral motoneurones evoked via commissural interneurones. Journal of Physiology, 2005, 568, 617-628.	2.9	48
28	Effects of 4-aminopyridine on synaptic transmission in the cat spinal cord. Brain Research, 1982, 240, 117-129.	2.2	45
29	Modulatory Effects of α1-,α2-, and β-Receptor Agonists on Feline Spinal Interneurons with Monosynaptic Input from Group I Muscle Afferents. Journal of Neuroscience, 2003, 23, 332-338.	3.6	39
30	Gating of transmission to motoneurones by stimuli applied in the locus coeruleus and raphe nuclei of the cat Journal of Physiology, 1993, 461, 705-722.	2.9	36
31	Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations. Journal of Physiology, 2015, 593, 947-966.	2.9	36
32	The Effect of DOPA on the Spinal Cord 4. Depolarization Evoked in the Central Terminals of Contralateral Ia Afferent Terminals by Volleys in the Flexor Reflex Aflerents. Acta Physiologica Scandinavica, 1966, 68, 337-341.	2.2	35
33	A relay for input from group II muscle afferents in sacral segments of the cat spinal cord Journal of Physiology, 1993, 465, 561-580.	2.9	33
34	How to Enhance Ipsilateral Actions of Pyramidal Tract Neurons. Journal of Neuroscience, 2005, 25, 7401-7405.	3.6	32
35	On organization of a neuronal network in pathways from group II muscle afferents in feline lumbar spinal segments. Journal of Physiology, 2002, 542, 301-314.	2.9	30
36	Interneurones in pathways from group II muscle afferents in sacral segments of the feline spinal cord Journal of Physiology, 1994, 475, 455-468.	2.9	28

#	Article	IF	CITATIONS
37	A comparison of postactivation depression of synaptic actions evoked by different afferents and at different locations in the feline spinal cord. Experimental Brain Research, 2002, 145, 126-129.	1.5	26
38	Presynaptic actions of transcranial and local direct current stimulation in the red nucleus. Journal of Physiology, 2014, 592, 4313-4328.	2.9	26
39	Long-lasting increase in axonal excitability after epidurally applied DC. Journal of Neurophysiology, 2017, 118, 1210-1220.	1.8	26
40	Spinal control of motor outputs by intrinsic and externally induced electric field potentials. Journal of Neurophysiology, 2017, 118, 1221-1234.	1.8	26
41	A confocal and electron microscopic study of contacts between 5-HT fibres and feline dorsal horn interneurons in pathways from muscle afferents. Journal of Comparative Neurology, 1997, 387, 430-438.	1.6	25
42	Differential presynaptic inhibition of actions of group II afferents in di―and polysynaptic pathways to feline motoneurones. Journal of Physiology, 2002, 542, 287-299.	2.9	25
43	Modulation of responses of feline Î ³ -motoneurones by noradrenaline, tizanidine and clonidine. Journal of Physiology, 1998, 512, 521-531.	2.9	24
44	Effects of Monoamines on Transmission from Group II Muscle Afferents in Sacral Segments in the Cat. European Journal of Neuroscience, 1994, 6, 1058-1061.	2.6	23
45	Does transâ€spinal and local DC polarization affect presynaptic inhibition and postâ€activation depression?. Journal of Physiology, 2017, 595, 1743-1761.	2.9	23
46	Differential modulation by monoamine membrane receptor agonists of reticulospinal input to lamina VIII feline spinal commissural interneurons. European Journal of Neuroscience, 2007, 26, 1205-1212.	2.6	21
47	Target cells of rubrospinal tract fibres within the lumbar spinal cord. Behavioural Brain Research, 1988, 28, 91-96.	2.2	20
48	Processing information related to centrally initiated locomotor and voluntary movements by feline spinocerebellar neurones. Journal of Physiology, 2011, 589, 5709-5725.	2.9	20
49	Evidence that some longâ€lasting effects of direct current in the rat spinal cord are activityâ€independent. European Journal of Neuroscience, 2016, 43, 1400-1411.	2.6	20
50	SENSORY NERVE CONDUCTION VELOCITY AS CORRELATED TO FIBRE SIZE IN EXPERIMENTAL UNDERNUTRITION IN THE RAT. Neuropathology and Applied Neurobiology, 1975, 1, 31-37.	3.2	19
51	Interneuronal Activity in Reflex Pathways from Group II Muscle Afferents Is Monitored by Dorsal Spinocerebellar Tract Neurons in the Cat. Journal of Neuroscience, 2008, 28, 3615-3622.	3.6	19
52	Direct current stimulation modulates the excitability of the sensory and motor fibres in the human posterior tibial nerve, with a longâ€lasting effect on the Hâ€reflex. European Journal of Neuroscience, 2017, 46, 2499-2506.	2.6	19
53	Morphology of interneurones in pathways from group II muscle afferents in sacral segments of the cat spinal cord. Journal of Comparative Neurology, 1993, 337, 518-528.	1.6	17
54	Collateral Actions of Premotor Interneurons on Ventral Spinocerebellar Tract Neurons in the Cat. Journal of Neurophysiology, 2010, 104, 1872-1883.	1.8	16

#	Article	IF	CITATIONS
55	Long-term effects of direct current are reproduced by intermittent depolarization of myelinated nerve fibers. Journal of Neurophysiology, 2018, 120, 1173-1185.	1.8	16
56	A leu-enkephalin depresses transmission from muscle and skin non-nociceptors to first-order feline spinal neurones. Journal of Physiology, 1998, 510, 513-525.	2.9	14
57	DC-Evoked Modulation of Excitability of Myelinated Nerve Fibers and Their Terminal Branches; Differences in Sustained Effects of DC. Neuroscience, 2018, 374, 236-249.	2.3	14
58	Primary afferent depolarization of myelinated fibres in the joint and interosseous nerves of the cat. Journal of Physiology, 1993, 466, 115-31.	2.9	14
59	On the distribution of information from muscle spindles in the spinal cord; how much does it depend on random factors?. Journal of Anatomy, 2015, 227, 184-193.	1.5	12
60	Branching points of primary afferent fibers are vital for the modulation of fiber excitability by epidural DC polarization and by GABA in the rat spinal cord. Journal of Neurophysiology, 2020, 124, 49-62.	1.8	12
61	The plasticity of nerve fibers: the prolonged effects of polarization of afferent fibers. Journal of Neurophysiology, 2021, 126, 1568-1591.	1.8	11
62	On coupling and decoupling of spinal interneuronal networks. Archives Italiennes De Biologie, 2007, 145, 235-50.	0.4	11
63	Facilitation of ipsilateral actions of corticospinal tract neurons on feline motoneurons by transcranial direct current stimulation. European Journal of Neuroscience, 2014, 40, 2628-2640.	2.6	10
64	A confocal and electron microscopic study of contacts between 5-HT fibres and feline dorsal horn interneurons in pathways from muscle afferents. Journal of Comparative Neurology, 1997, 387, 430-8.	1.6	9
65	How effective is integration of information from muscle afferents in spinal pathways?. NeuroReport, 1996, 7, 2337-2340.	1.2	8
66	Do spinocerebellar neurones forward information on spinal actions of neurones in the feline red nucleus?. Journal of Physiology, 2011, 589, 5727-5739.	2.9	7
67	Recurrent inhibition of reflex transmission to motoneurones. Acta Physiologica Scandinavica, 1968, 73, 41A.	2.2	6
68	Modulation of Information Forwarded to Feline Cerebellum by Monoaminesa. Annals of the New York Academy of Sciences, 1998, 860, 106-109.	3.8	6
69	Ephaptic interactions between myelinated nerve fibres of rodent peripheral nerves. European Journal of Neuroscience, 2019, 50, 3101-3107.	2.6	6
70	Chapter 13 A Positive Feedback Circuit Involving Muscle Spindle Secondaries and Gamma Motoneurons in the Cat. Progress in Brain Research, 1999, 123, 149-156.	1.4	5
71	Distribution of Recurrent Inhibition of Ia IPSPs in Motoneurones. Acta Physiologica Scandinavica, 1968, 74, 17A.	2.2	2
72	Interactions Between Baclofen and DC-induced Plasticity of Afferent Fibers within the Spinal Cord. Neuroscience, 2019, 404, 119-129.	2.3	2

#	Article	IF	CITATIONS
73	A confocal and electron microscopic study of contacts between 5â€HT fibres and feline dorsal horn interneurons in pathways from muscle afferents. Journal of Comparative Neurology, 1997, 387, 430-438.	1.6	1
74	On advances in studies of the properties of various types of neurones and their functional roles. Brain Research Bulletin, 1999, 50, 327.	3.0	0