Helmut U Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886553/publications.pdf Version: 2024-02-01

HELMUT II KLEIN

#	Article	IF	CITATIONS
1	Prophylactic Implantation of a Defibrillator in Patients with Myocardial Infarction and Reduced Ejection Fraction. New England Journal of Medicine, 2002, 346, 877-883.	27.0	6,199
2	Improved Survival with an Implanted Defibrillator in Patients with Coronary Disease at High Risk for Ventricular Arrhythmia. New England Journal of Medicine, 1996, 335, 1933-1940.	27.0	3,859
3	Cardiac-Resynchronization Therapy for the Prevention of Heart-Failure Events. New England Journal of Medicine, 2009, 361, 1329-1338.	27.0	2,716
4	Reduction in Inappropriate Therapy and Mortality through ICD Programming. New England Journal of Medicine, 2012, 367, 2275-2283.	27.0	1,186
5	Inappropriate Implantable Cardioverter-Defibrillator Shocks in MADIT II. Journal of the American College of Cardiology, 2008, 51, 1357-1365.	2.8	735
6	Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. European Heart Journal, 2011, 32, 847-855.	2.2	444
7	Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. European Heart Journal, 2015, 36, 425-433.	2.2	291
8	Use of the Wearable Cardioverter Defibrillator in High-Risk Cardiac Patients. Circulation, 2015, 132, 1613-1619.	1.6	199
9	Use of a Wearable Defibrillator in Terminating Tachyarrhythmias in Patients at High Risk for Sudden Death:. Results of WEARIT/BIROAD. PACE - Pacing and Clinical Electrophysiology, 2004, 27, 4-9.	1.2	193
10	Risk for ventricular fibrillation in peripartum cardiomyopathy with severely reduced left ventricular function—value of the wearable cardioverter/defibrillator. European Journal of Heart Failure, 2014, 16, 1331-1336.	7.1	121
11	Bridging a Temporary High Risk of Sudden Arrhythmic Death. Experience with the Wearable Cardioverter Defibrillator (WCD). PACE - Pacing and Clinical Electrophysiology, 2010, 33, 353-367.	1.2	120
12	Long-term vagal stimulation for heart failure: Eighteen month results from the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) trial. International Journal of Cardiology, 2017, 244, 229-234.	1.7	113
13	Risk stratification for implantable cardioverter defibrillator therapy: the role of the wearable cardioverter-defibrillator. European Heart Journal, 2013, 34, 2230-2242.	2.2	104
14	Mortality Reduction in Relation to Implantable Cardioverter Defibrillator Programming in the Multicenter Automatic Defibrillator Implantation Trial-Reduce Inappropriate Therapy (MADIT-RIT). Circulation: Arrhythmia and Electrophysiology, 2014, 7, 785-792.	4.8	101
15	Clinical Efficacy of the Wearable Cardioverter-Defibrillator in Acutely Terminating Episodes of Ventricular Fibrillation. American Journal of Cardiology, 1998, 81, 1253-1256.	1.6	80
16	Clinical Efficacy of a Wearable Defibrillator in Acutely Terminating Episodes of Ventricular Fibrillation Using Biphasic Shocks. PACE - Pacing and Clinical Electrophysiology, 2003, 26, 2016-2022.	1.2	69
17	The wearable cardioverter-defibrillator: current technology and evolving indications. Europace, 2017, 19, 335-345.	1.7	65
18	Predicted benefit of an implantable cardioverter-defibrillator: the MADIT-ICD benefit score. European Heart Journal, 2021, 42, 1676-1684.	2.2	61

HELMUT U KLEIN

13

#	Article	IF	CITATIONS
19	Rationale and study design of the <scp>NEuroCardiac TherApy foR</scp> Heart Failure Study: <scp>NECTARâ€HF</scp> . European Journal of Heart Failure, 2014, 16, 692-699.	7.1	56
20	Vagus nerve stimulation: A new approach to reduce heart failure. Cardiology Journal, 2010, 17, 638-44.	1.2	55
21	Impact of Autonomic Regulation Therapy in Patients with Heart Failure. Circulation: Heart Failure, 2019, 12, e005879.	3.9	50
22	Apical vs. non-apical right ventricular pacing in cardiac resynchronization therapy: a meta-analysis. Europace, 2015, 17, 1259-1266.	1.7	41
23	Sustained clinical benefit of cardiac resynchronization therapy in non-LBBB patients with prolonged PR-interval: MADIT-CRT long-term follow-up. Clinical Research in Cardiology, 2016, 105, 944-952.	3.3	41
24	Comparison of symptomatic and functional responses to vagus nerve stimulation in ANTHEMâ€HF, INOVATEâ€HF, and NECTARâ€HF. ESC Heart Failure, 2020, 7, 76-84.	3.1	41
25	Sex Differences in Longâ€Term Outcomes With Cardiac Resynchronization Therapy in Mild Heart Failure Patients With Left Bundle Branch Block. Journal of the American Heart Association, 2015, 4, .	3.7	37
26	Wearable Defibrillator in Congenital Structural Heart Disease and Inherited Arrhythmias. American Journal of Cardiology, 2011, 108, 1632-1638.	1.6	36
27	The Effect of ICD Programming on Inappropriate and Appropriate ICD Therapies in Ischemic and Nonischemic Cardiomyopathy: The MADITâ€RIT Trial. Journal of Cardiovascular Electrophysiology, 2015, 26, 424-433.	1.7	31
28	Multicenter Automatic Defibrillator Implantation Trial–Subcutaneous Implantable Cardioverter Defibrillator (MADIT S-ICD): Design and clinical protocol. American Heart Journal, 2017, 189, 158-166.	2.7	31
29	Cost-effectiveness of implantable cardiac devices in patients with systolic heart failure. Heart, 2016, 102, 1742-1749.	2.9	30
30	Left Ventricular Lead Location and Long-Term Outcomes in Cardiac Resynchronization Therapy Patients. JACC: Clinical Electrophysiology, 2018, 4, 1410-1420.	3.2	20
31	Long-Term Outcomes With Cardiac Resynchronization Therapy in Patients With Mild Heart Failure With Moderate Renal Dysfunction. Circulation: Heart Failure, 2015, 8, 725-732.	3.9	18
32	Rationale and design of the BUDAPEST-CRT Upgrade Study: a prospective, randomized, multicentre clinical trial. Europace, 2017, 19, euw193.	1.7	17
33	Time-dependent risk reduction of ventricular tachyarrhythmias in cardiac resynchronization therapy patients: a MADIT-RIT sub-study. Europace, 2015, 17, 1085.1-1091.	1.7	16
34	Oneâ€year followâ€up of the prospective registry of patients using the wearable defibrillator (WEARITâ€II) Tj ET(Qq0,0 0 rg	BT ₁ Overlock
35	Extended use of the wearable cardioverter-defibrillator in patients at risk for sudden cardiac death. Europace, 2018, 20, f225-f232.	1.7	13

36Protected risk stratification with the wearable cardioverter-defibrillator: results from the
WEARIT-II-EUROPE registry. Clinical Research in Cardiology, 2021, 110, 102-113.3.3

Helmut U Klein

#	Article	IF	CITATIONS
37	A Metric for Evaluating the Cardiac Response to ResynchronizationÂTherapy. American Journal of Cardiology, 2014, 113, 1371-1377.	1.6	11
38	Experience with the wearable cardioverter-defibrillator in older patients: Results from the Prospective Registry of Patients Using the Wearable Cardioverter-Defibrillator. Heart Rhythm, 2018, 15, 1379-1386.	0.7	11
39	Safety of the Wearable Cardioverter Defibrillator (WCD) in Patients with Implanted Pacemakers. PACE - Pacing and Clinical Electrophysiology, 2017, 40, 271-277.	1.2	10
40	Cardiac Resynchronization in Different Age Groups: A MADIT-CRT Long-Term Follow-Up Substudy. Journal of Cardiac Failure, 2016, 22, 143-149.	1.7	9
41	Advances in Our Clinical Understanding of Autonomic Regulation Therapy Using Vagal Nerve Stimulation in Patients Living With Heart Failure. Frontiers in Physiology, 2022, 13, 857538.	2.8	9
42	The impact of body mass index on the wearable cardioverter defibrillator shock efficacy and patient wear time. American Heart Journal, 2017, 186, 111-117.	2.7	7
43	Sex Differences in the Risk of First and Recurrent Ventricular Tachyarrhythmias Among Patients Receiving an Implantable Cardioverter-Defibrillator for Primary Prevention. JAMA Network Open, 2022, 5, e2217153.	5.9	6
44	Comparison of Long-Term Survival Benefits With Cardiac Resynchronization Therapy in Patients With Mild Heart Failure With Versus Without Diabetes Mellitus (from the Multicenter Automatic) Tj ETQq0 0 0 rgBT /C Journal of Cardiology, 2018, 121, 1567-1574.	Dverlock 1	0 र्मु 50 462 ⁻
45	Death with an implantable cardioverter-defibrillator: a MADIT-II substudy. Europace, 2019, 21, 1843-1850.	1.7	5
10		1.7	0
46	Cardiac resynchronization therapy is associated with reductions in left atrial volume and inappropriate implantable cardioverter-defibrillator therapy in MADIT-CRT. Heart Rhythm, 2014, 11, 1001-1007.	0.7	4
47	Effect of Significant Weight Change on Inappropriate Implantable Cardioverterâ€Đefibrillator Therapy. PACE - Pacing and Clinical Electrophysiology, 2017, 40, 9-16.	1.2	4
48	Response to Letter Regarding, "PR Interval Identifies Clinical Response in Patients With Non-Left Bundle Branch Block: A Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy Sub-Study―by Kutyifa et al. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 1280-1280.	4.8	3
49	Right ventricular lead location, right-left ventricular lead interaction, and long-term outcomes in cardiac resynchronization therapy patients. Journal of Interventional Cardiac Electrophysiology, 2018, 52, 185-194.	1.3	3
50	Implantable defibrillators: 30 years of history. Giornale Italiano Di Cardiologia, 2010, 11, 48S-52S.	0.0	3
51	Cardiac Resynchronization Therapy in Asymptomatic or Mildly Symptomatic Heart Failure Patients. Current Treatment Options in Cardiovascular Medicine, 2010, 12, 431-442.	0.9	2
52	Michel Mirowski and the beginning of a new era of fighting sudden arrhythmic death. Herzschrittmachertherapie Und Elektrophysiologie, 2015, 26, 61-69.	0.8	2
53	Effect of cardiac resynchronization therapy on the risk of ventricular tachyarrhythmias in patients with chronic kidney disease. , 2017, 22, e12404.		2
54	Diabetes Mellitus. JACC: Clinical Electrophysiology, 2020, 6, 559-561.	3.2	2

Helmut U Klein

#	Article	IF	CITATIONS
55	Discrepancies in the U.S. and European guidelines involving the implantable cardioverter–defibrillator and cardiac resynchronization therapy: Need for a single shared international publication. Heart Rhythm, 2017, 14, 474-475.	0.7	1
56	Elective DC cardioversion of atrial fibrillation: did we use the right procedure?. European Heart Journal, 2020, 41, 632-633.	2.2	1
57	The Wearable Cardioverter Defibrillator—Bridge to the Implantable Defibrillator. Cardiac Electrophysiology Clinics, 2009, 1, 129-146.	1.7	0
58	Preventive cardiac resynchronisation therapy. Heart, 2012, 98, 508-515.	2.9	0
59	Letter to the Editor— Prognostic implication of baseline PR interval in patients undergoing cardiac resynchronization therapy. Heart Rhythm, 2016, 13, 1573.	0.7	0
60	No Utility of the Wearable Cardioverter-Defibrillator in Patients With Nonischemic Cardiomyopathy?. Journal of the American College of Cardiology, 2016, 67, 2807.	2.8	0
61	Coronary revascularization: A useful antiarrhythmic approach?. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 780-782.	1.2	0
62	Do we need the wearable cardioverter-defibrillator (WCD)?. International Journal of Cardiology, 2018, 268, 151-152.	1.7	0
63	Arthur Jay Moss MD PhD. European Heart Journal, 2018, 39, 1872-1874.	2.2	0
64	Cardiac resynchronization therapy with- or without defibrillator. Estimating the risk of arrhythmic death or assessing the likelihood of non-arrhythmic mortality?. International Journal of Cardiology, 2021, 330, 82-83.	1.7	0
65	All for one and one for All? – Do we need a VT network?. IJC Heart and Vasculature, 2021, 34, 100769.	1.1	0
66	Considering the Need to Expand the Indications for Wearable Defibrillator Therapy. Journal of Innovations in Cardiac Rhythm Management, 2019, 10, 3751-3760.	0.5	0