Nadia Judith Jacobo-Herrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886510/publications.pdf

Version: 2024-02-01

471509 32 2,593 17 citations h-index papers

32 g-index 32 32 32 3812 docs citations times ranked all docs citing authors

414414

#	Article	IF	CITATIONS
1	HypoxaMIRs: Key Regulators of Hallmarks of Colorectal Cancer. Cells, 2022, 11, 1895.	4.1	4
2	Negative Regulation of ULK1 by microRNA-106a in Autophagy Induced by a Triple Drug Combination in Colorectal Cancer Cells In Vitro. Genes, 2021, 12, 245.	2.4	15
3	Combination of Metformin, Sodium Oxamate and Doxorubicin Induces Apoptosis and Autophagy in Colorectal Cancer Cells via Downregulation HIF- $1\hat{l}_{\pm}$. Frontiers in Oncology, 2021, 11, 594200.	2.8	18
4	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 6	22 Td (edition 1,430
5	Aberrant Metabolism as Inductor of Epigenetic Changes in Breast Cancer: Therapeutic Opportunities. Frontiers in Oncology, 2021, 11, 676562.	2.8	10
6	Synthesis and cytotoxic evaluation of halogenated furanones. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2020, 151, 1841-1849.	1.8	4
7	Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer. Genes, 2020, 11, 1058.	2.4	10
8	Identification of miRNA Master Regulators in Breast Cancer. Cells, 2020, 9, 1610.	4.1	20
9	A Higher Frequency Administration of the Nontoxic Cycloartane-Type Triterpene Argentatin A Improved Its Anti-Tumor Activity. Molecules, 2020, 25, 1780.	3.8	11
10	Editorial: Tumor Cell Metabolism and Autophagy as Therapeutic Targets. Frontiers in Oncology, 2020, 10, 573343.	2.8	1
11	Selective Acetogenins and Their Potential as Anticancer Agents. Frontiers in Pharmacology, 2019, 10, 783.	3.5	43
12	A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites, 2019, 9, 258.	2.9	410
13	A Multi-Center Study of BRCA1 and BRCA2 Germline Mutations in Mexican-Mestizo Breast Cancer Families Reveals Mutations Unreported in Latin American Population. Cancers, 2019, 11, 1246.	3.7	9
14	Cell migration and proliferation are regulated by miR-26a in colorectal cancer via the PTEN–AKT axis. Cancer Cell International, 2019, 19, 80.	4.1	38
15	The Phytosterol Peniocerol Inhibits Cell Proliferation and Tumor Growth in a Colon Cancer Xenograft Model. Frontiers in Oncology, 2019, 9, 1341.	2.8	7
16	MiR-26a downregulates retinoblastoma in colorectal cancer. Tumor Biology, 2017, 39, 101042831769594.	1.8	23
17	Gene signature based on degradome-related genes can predict distal metastasis in cervical cancer patients. Tumor Biology, 2017, 39, 101042831771189.	1.8	22
18	Masticadienonic and 3α-OH Masticadienoic Acids Induce Apoptosis and Inhibit Cell Proliferation and Tumor Growth in Prostate Cancer Xenografts in Vivo. Molecules, 2017, 22, 1479.	3.8	10

#	Article	IF	CITATIONS
19	Targeting Metabolic Remodeling in Triple Negative Breast Cancer in a Murine Model. Journal of Cancer, 2017, 8, 178-189.	2.5	26
20	Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer. Journal of Cancer, 2016, 7, 1632-1644.	2.5	18
21	A microRNA expression signature for clinical response in locally advanced cervical cancer. Gynecologic Oncology, 2016, 142, 557-565.	1.4	49
22	PAX8 is transcribed aberrantly in cervical tumors and derived cell lines due to complex gene rearrangements. International Journal of Oncology, 2016, 49, 371-380.	3.3	4
23	Medicinal plants used in Mexican traditional medicine for the treatment of colorectal cancer. Journal of Ethnopharmacology, 2016, 179, 391-402.	4.1	62
24	Transcript Profiling Distinguishes Complete Treatment Responders With Locally Advanced Cervical Cancer. Translational Oncology, 2015, 8, 77-84.	3.7	11
25	MicroRNAs in Cervical Cancer: Evidences for a miRNA Profile Deregulated by HPV and Its Impact on Radio-Resistance. Molecules, 2014, 19, 6263-6281.	3.8	55
26	Clinical evidence of the relationship between aspirin and breast cancer risk (Review). Oncology Reports, 2014, 32, 451-461.	2.6	16
27	HPV-Based Screening, Triage, Treatment, and Followup Strategies in the Management of Cervical Intraepithelial Neoplasia. Obstetrics and Gynecology International, 2013, 2013, 1-15.	1.3	12
28	Gene expression profiles induced by E6 from non-European HPV18 variants reveals a differential activation on cellular processes driving to carcinogenesis. Virology, 2012, 432, 81-90.	2.4	23
29	Reversal of Multidrug Resistance by Morning Glory Resin Glycosides in Human Breast Cancer Cells. Journal of Natural Products, 2012, 75, 93-97.	3.0	77
30	Inhibitors of Bacterial Multidrug Efflux Pumps from the Resin Glycosides of <i>Ipomoea murucoides</i> . Journal of Natural Products, 2008, 71, 1037-1045.	3.0	79
31	Physalins fromWitheringiasolanaceaas Modulators of the NF-κB Cascade⊥. Journal of Natural Products, 2006, 69, 328-331.	3.0	49
32	F-κB modulators fromValeriana officinalis. Phytotherapy Research, 2006, 20, 917-919.	5.8	27