Michael Reth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886218/publications.pdf

Version: 2024-02-01

71102 46799 8,535 100 41 89 citations h-index g-index papers 120 120 120 9504 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Science Advances, 2022, 8, eabm1759.	10.3	30
2	Human CD38 regulates B cell antigen receptor dynamic organization in normal and malignant B cells. Journal of Experimental Medicine, 2022, 219, .	8.5	13
3	CD20 as a gatekeeper of the resting state of human B cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	59
4	Designing a SARS-CoV-2 T-Cell-Inducing Vaccine for High-Risk Patient Groups. Vaccines, 2021, 9, 428.	4.4	22
5	A surrogate cellâ€based SARSâ€CoVâ€2 spike blocking assay. European Journal of Immunology, 2021, 51, 2665-2676.	2.9	3
6	Quantitative proteomics identifies PTP1B as modulator of B cell antigen receptor signaling. Life Science Alliance, 2021, 4, e202101084.	2.8	2
7	A Barcoded Flow Cytometric Assay to Explore the Antibody Responses Against SARS-CoV-2 Spike and Its Variants. Frontiers in Immunology, 2021, 12, 730766.	4.8	7
8	The IL-3, IL-5, and GM-CSF common receptor beta chain mediates oncogenic activity of FLT3-ITD-positive AML. Leukemia, $2021, \ldots$	7.2	12
9	Immunoglobulin expression in the endoplasmic reticulum shapes the metabolic fitness of B lymphocytes. Life Science Alliance, 2020, 3, e202000700.	2.8	8
10	A symmetric geometry of transmembrane domains inside the B cell antigen receptor complex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13468-13473.	7.1	10
11	Pten controls Bâ€eell responsiveness and germinal center reaction by regulating the expression of lgD <scp>BCR</scp> . EMBO Journal, 2019, 38, .	7.8	27
12	LAMTOR2 (p14) Controls B Cell Differentiation by Orchestrating Endosomal BCR Trafficking. Frontiers in Immunology, 2019, 10, 497.	4.8	7
13	Carbohydrate-dependent B cell activation by fucose-binding bacterial lectins. Science Signaling, 2019, 12, .	3.6	35
14	A new branched proximity hybridization assay for the quantification of nanoscale protein–protein proximity. PLoS Biology, 2019, 17, e3000569.	5.6	6
15	Synthetic biology of B cell activation: understanding signal amplification at the B cell antigen receptor using a rebuilding approach. Biological Chemistry, 2019, 400, 555-563.	2.5	4
16	TLR induces reorganization of the IgM-BCR complex regulating murine B-1 cell responses to infections. ELife, $2019, 8, .$	6.0	33
17	Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3120-3125.	7.1	38
18	Continuous signaling of <scp>CD</scp> 79b and <scp>CD</scp> 19 is required for the fitness of Burkitt lymphoma B cells. EMBO Journal, 2018, 37, .	7.8	51

#	Article	IF	CITATIONS
19	Study B Cell Antigen Receptor Nano-Scale Organization by In Situ Fab Proximity Ligation Assay. Methods in Molecular Biology, 2018, 1707, 171-181.	0.9	12
20	First Infusion Reactions are Mediated by FcÎ ³ RIIIb and Neutrophils. Pharmaceutical Research, 2018, 35, 169.	3.5	8
21	Conditional Selection of B Cells in Mice With an Inducible B Cell Development. Frontiers in Immunology, 2018, 9, 1806.	4.8	9
22	Association of CXCR4 with IgM and IgD BCR Isotypes: Role in B Cell Malignancies. Blood, 2018, 132, 1852-1852.	1.4	2
23	The IgM receptor $Fc\hat{l}$ /4R limits tonic BCR signaling by regulating expression of the IgM BCR. Nature Immunology, 2017, 18, 321-333.	14.5	69
24	CXCR4 signaling and function require the expression of the IgD-class B-cell antigen receptor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5231-5236.	7.1	79
25	The BTG2-PRMT1 module limits pre-B cell expansion by regulating the CDK4-Cyclin-D3 complex. Nature Immunology, 2017, 18, 911-920.	14.5	44
26	Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nature Immunology, 2017, 18, 1150-1159.	14.5	42
27	Molecular requirements of the Bâ€cell antigen receptor for sensing monovalent antigens. EMBO Journal, 2016, 35, 2371-2381.	7.8	34
28	What goes up must come down: A tripartite Dokâ€3/Grb2/SHIP1 inhibitory module limits BCR signaling. European Journal of Immunology, 2016, 46, 2507-2511.	2.9	6
29	LED Thermo Flow — Combining Optogenetics with Flow Cytometry. Journal of Visualized Experiments, 2016, , .	0.3	5
30	Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. Journal of Immunology, 2016, 196, 2348-2360.	0.8	15
31	Spleen Tyrosine Kinase Is Involved in the CD38 Signal Transduction Pathway in Chronic Lymphocytic Leukemia. PLoS ONE, 2016, 11, e0169159.	2.5	7
32	The nanoscale organization of the B lymphocyte membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 830-840.	4.1	34
33	Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature, 2015, 518, 542-546.	27.8	607
34	Structure and Signaling Function of the B-Cell Antigen Receptor and Its Coreceptors., 2015,, 151-170.		0
35	TSC1 Activates TGF- \hat{l}^2 -Smad2/3 Signaling in Growth Arrest and Epithelial-to-Mesenchymal Transition. Developmental Cell, 2015, 32, 617-630.	7.0	54
36	Preface to special issue on nanoscale membrane organisations. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 765-766.	4.1	2

#	Article	IF	CITATIONS
37	Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature, 2015, 521, 357-361.	27.8	127
38	<scp>CD</scp> 19 and <scp>BAFF</scp> â€R can signal to promote <scp>B</scp> â€eell survival in the absence of Syk. EMBO Journal, 2015, 34, 925-939.	7.8	63
39	Responsiveness of B cells is regulated by the hinge region of IgD. Nature Immunology, 2015, 16, 534-543.	14.5	98
40	B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Science Signaling, 2015, 8, ra93.	3.6	108
41	Receptor Dissociation and B-Cell Activation. Current Topics in Microbiology and Immunology, 2015, 393, 27-43.	1.1	27
42	Processing of CD74 by the Intramembrane Protease SPPL2a Is Critical for B Cell Receptor Signaling in Transitional B Cells. Journal of Immunology, 2015, 195, 1548-1563.	0.8	25
43	Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development and activation. Journal of Experimental Medicine, 2015, 212, 1693-1708.	8.5	18
44	Suboptimal Bâ€cell antigen receptor signaling activity in vivo elicits germinal center counterselection mechanisms. European Journal of Immunology, 2015, 45, 603-611.	2.9	5
45	Significance of the IL-3 Receptor Beta Chain (IL-3Rbc) for FLT3-ITD Dependent Oncogeneic Signaling in AML. Blood, 2015, 126, 3660-3660.	1.4	0
46	SYK Is Involved in the CD38 Signal Transduction Pathway in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 2910-2910.	1.4	0
47	Complete Block of Early B Cell Differentiation in Mice Lacking the Endosomal Adaptor Protein p14. Blood, 2015, 126, 1026-1026.	1.4	0
48	The Role of the Syk/Shp-1 Kinase-Phosphatase Equilibrium in B Cell Development and Signaling. Journal of Immunology, 2014, 193, 268-276.	0.8	40
49	Production of IgG autoantibody requires expression of activationâ€induced deaminase in earlyâ€developing B cells in a mouse model of SLE. European Journal of Immunology, 2014, 44, 3093-3108.	2.9	24
50	The Ligand-Binding Domain of Siglec-G Is Crucial for Its Selective Inhibitory Function on B1 Cells. Journal of Immunology, 2014, 192, 5406-5414.	0.8	38
51	Signaling Circuits in Early B-Cell Development. Advances in Immunology, 2014, 122, 129-175.	2.2	55
52	The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells. Journal of Experimental Medicine, 2014, 211, 2199-2212.	8.5	45
53	PDK1 regulates B cell differentiation and homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9573-9578.	7.1	43
54	The protein tyrosine phosphatase PTP1B is a negative regulator of CD40 and BAFF-R signaling and controls B cell autoimmunity. Journal of Experimental Medicine, 2014, 211, 427-440.	8.5	51

#	Article	IF	Citations
55	MIF Promotes B Cell Chemotaxis through the Receptors CXCR4 and CD74 and ZAP-70 Signaling. Journal of Immunology, 2014, 192, 5273-5284.	0.8	103
56	B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. ELife, 2014, 3, e02069.	6.0	122
57	Matching cellular dimensions with molecular sizes. Nature Immunology, 2013, 14, 765-767.	14.5	118
58	Inhibition of mTORC1 by Astrin and Stress Granules Prevents Apoptosis in Cancer Cells. Cell, 2013, 154, 859-874.	28.9	243
59	Michael Neuberger (1953–2013). Immunity, 2013, 39, 987-988.	14.3	0
60	Inhibition of mTORC1 by Astrin and Stress Granules Prevents Apoptosis in Cancer Cells. Cell, 2013, 155, 964-966.	28.9	1
61	Proximity Ligation Assay for High-content Profiling of Cell Signaling Pathways on a Microfluidic Chip. Molecular and Cellular Proteomics, 2013, 12, 3898-3907.	3.8	27
62	Pre-Clustering of the B Cell Antigen Receptor Demonstrated by Mathematically Extended Electron Microscopy. Frontiers in Immunology, 2013, 4, 427.	4.8	20
63	CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca ²⁺ signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12402-12407.	7.1	106
64	Immunoglobulins drive terminal maturation of splenic dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2282-2287.	7.1	12
65	The Serine/Threonine Phosphatase PP4 Is Required for Pro-B Cell Development through Its Promotion of Immunoglobulin VDJ Recombination. PLoS ONE, 2013, 8, e68804.	2.5	11
66	Semi-Supervised Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data. PLoS ONE, 2013, 8, e62732.	2.5	27
67	The E3 ubiquitin ligase Mule acts through the ATM–p53 axis to maintain B lymphocyte homeostasis. Journal of Experimental Medicine, 2012, 209, 173-186.	8.5	58
68	Non–cell-autonomous hedgehog signaling promotes murine B lymphopoiesis from hematopoietic progenitors. Blood, 2012, 119, 5438-5448.	1.4	14
69	B Cells That Produce Immunoglobulin E Mediate Colitis in BALB/c Mice. Gastroenterology, 2012, 142, 96-108.	1.3	50
70	Synthetic immune signaling. Current Opinion in Biotechnology, 2012, 23, 780-784.	6.6	8
71	Drosophila S2 Schneider Cells: A Useful Tool for Rebuilding and Redesigning Approaches in Synthetic Biology. Methods in Molecular Biology, 2012, 813, 331-341.	0.9	14
72	The SH2-domain of SHIP1 interacts with the SHIP1 C-terminus: Impact on SHIP1/Ig-α interaction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 206-214.	4.1	13

#	Article	IF	CITATIONS
73	Bacillus subtilis MreB Orthologs Self-Organize into Filamentous Structures underneath the Cell Membrane in a Heterologous Cell System. PLoS ONE, 2011, 6, e27035.	2.5	28
74	B cell homeostasis and plasma cell homing controlled by Kr $\tilde{A}^{1}\!/\!\!\!/$ ppel-like factor 2. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 710-715.	7.1	97
75	The dissociation activation model of B cell antigen receptor triggering. FEBS Letters, 2010, 584, 4872-4877.	2.8	90
76	Analysis of novel phospho-ITAM specific antibodies in a S2 reconstitution system for TCR–CD3 signalling. Immunology Letters, 2010, 130, 43-50.	2.5	12
77	Oligomeric organization of the B-cell antigen receptor on resting cells. Nature, 2010, 467, 465-469.	27.8	162
78	N-linked glycosylation selectively regulates autonomous precursor BCR function. Nature Immunology, 2010, 11, 759-765.	14.5	75
79	Voltage control for B cell activation. Nature Immunology, 2010, 11, 191-192.	14.5	7
80	Arginine methylation of the B cell antigen receptor promotes differentiation. Journal of Experimental Medicine, 2010, 207, 711-719.	8.5	63
81	Syk is a dual-specificity kinase that self-regulates the signal output from the B-cell antigen receptor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18563-18568.	7.1	46
82	Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nature Reviews Immunology, 2009, 9, 195-205.	22.7	275
83	Autoinhibition and adapter function of Syk. Immunological Reviews, 2009, 232, 286-299.	6.0	71
84	Induction of B-cell development in adult mice reveals the ability of bone marrow to produce B-1a cells. Blood, 2009, 114, 4960-4967.	1.4	99
85	The kinase Syk as an adaptor controlling sustained calcium signalling and B-cell development. EMBO Journal, 2008, 27, 1333-1344.	7.8	71
86	SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nature Immunology, 2008, 9, 623-631.	14.5	137
87	Identification of disulfide bonds in the Ig-Â/Ig-Â component of the B cell antigen receptor using the Drosophila S2 cell reconstitution system. International Immunology, 2006, 18, 1385-1396.	4.0	28
88	B Cell Signaling and Tumorigenesis. Annual Review of Immunology, 2005, 23, 415-445.	21.8	102
89	Feedback regulation of lymphocyte signalling. Nature Reviews Immunology, 2004, 4, 269-278.	22.7	73
90	B Cell Progenitors Are Arrested in Maturation but Have Intact VDJ Recombination in the Absence of Ig- $\hat{l}\pm$ and Ig- \hat{l}^2 . Journal of Immunology, 2002, 169, 865-872.	0.8	95

#	Article	IF	CITATIONS
91	Amplification of B Cell Antigen Receptor Signaling by a Syk/ITAM Positive Feedback Loop. Molecular Cell, 2002, 10, 1057-1069.	9.7	308
92	The absence of SLP65 and Btk blocks B cell development at the preB cell receptor-positive stage. European Journal of Immunology, 2001, 31, 2164-2169.	2.9	59
93	Stability of the B cell antigen receptor complex. Molecular Immunology, 2000, 37, 253-259.	2.2	29
94	Monomeric and Oligomeric Complexes of the B Cell Antigen Receptor. Immunity, 2000, 13, 5-14.	14.3	258
95	Abnormal Development and Function of B Lymphocytes in Mice Deficient for the Signaling Adaptor Protein SLP-65. Immunity, 1999, 11, 547-554.	14.3	296
96	SLP-65: A New Signaling Component in B Lymphocytes which Requires Expression of the Antigen Receptor for Phosphorylation. Journal of Experimental Medicine, 1998, 188, 791-795.	8.5	250
97	INITIATION AND PROCESSING OF SIGNALS FROM THE B CELL ANTIGEN RECEPTOR. Annual Review of Immunology, 1997, 15, 453-479.	21.8	430
98	Antigen Receptors on B Lymphocytes. Annual Review of Immunology, 1992, 10, 97-121.	21.8	468
99	Molecular components of the B-cell antigen receptor complex of the IgM class. Nature, 1990, 343, 760-762.	27.8	397
100	Antigen receptor tail clue. Nature, 1989, 338, 383-384.	27.8	1,379