Maria Concetta Morrone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2885904/publications.pdf

Version: 2024-02-01

220 papers

13,298 citations

57 h-index 27389 106 g-index

240 all docs

240 docs citations

240 times ranked

6768 citing authors

#	Article	IF	CITATIONS
1	Propagation and update of auditory perceptual priors through alpha and theta rhythms. European Journal of Neuroscience, 2022, 55, 3083-3099.	1.2	6
2	Normal Retinotopy in Primary Visual Cortex in a Congenital Complete Unilateral Lesion of Lateral Geniculate Nucleus in Human: A Case Study. International Journal of Molecular Sciences, 2022, 23, 1055.	1.8	2
3	Does more imply better vision?. Cognitive Neuropsychology, 2022, 39, 78-80.	0.4	1
4	Short-term plasticity in the human visual thalamus. ELife, 2022, 11 , .	2.8	9
5	Vision: Optimizing each glimpse. Current Biology, 2022, 32, R567-R569.	1.8	1
6	Bariatric surgery restores visual cortical plasticity in nondiabetic subjects with obesity. International Journal of Obesity, 2021, 45, 1821-1829.	1.6	4
7	Typical Crossmodal Numerosity Perception in Preterm Newborns. Multisensory Research, 2021, 34, 693-714.	0.6	7
8	White matter deficits correlate with visual motion perception impairments in dyslexic carriers of the DCDC2 genetic risk variant. Experimental Brain Research, 2021, 239, 2725-2740.	0.7	6
9	Predictive visuo-motor communication through neural oscillations. Current Biology, 2021, 31, 3401-3408.e4.	1.8	19
10	Skipping breakfast changes visual processing: incretins contribution to short-term visual plasticity. Journal of Vision, 2021, 21, 2365.	0.1	0
11	The Common Rhythm of Action and Perception. Journal of Cognitive Neuroscience, 2020, 32, 187-200.	1.1	43
12	Perceptual Oscillations in Gender Classification of Faces, Contingent on Stimulus History. IScience, 2020, 23, 101573.	1.9	12
13	The visual white matter connecting human area prostriata and the thalamus is retinotopically organized. Brain Structure and Function, 2020, 225, 1839-1853.	1.2	13
14	Using psychophysical performance to predict short-term ocular dominance plasticity in human adults. Journal of Vision, 2020, 20, 6.	0.1	12
15	Neuroplasticity in adult human visual cortex. Neuroscience and Biobehavioral Reviews, 2020, 112, 542-552.	2.9	79
16	A large white matter bundle connecting area prostriata and visual thalamus in humans. Journal of Vision, 2020, 20, 1233.	0.1	0
17	Visual Cortical Plasticity in Retinitis Pigmentosa. , 2019, 60, 2753.		21
18	A new counterintuitive training for adult amblyopia. Annals of Clinical and Translational Neurology, 2019, 6, 274-284.	1.7	66

#	Article	IF	CITATIONS
19	Time dilation effect in an active observer and virtual environment requires apparent motion: No dilation for retinal- or world-motion alone. Journal of Vision, 2019, 19, 4.	0.1	5
20	Behavioural oscillations in visual orientation discrimination reveal distinct modulation rates for both sensitivity and response bias. Scientific Reports, 2019, 9, 1115.	1.6	36
21	Residual Visual Responses in Patients With Retinitis Pigmentosa Revealed by Functional Magnetic Resonance Imaging. Translational Vision Science and Technology, 2019, 8, 44.	1.1	11
22	Visual sensitivity and bias oscillate phase-locked to saccadic eye movements. Journal of Vision, 2019, 19, 15.	0.1	16
23	Altered Visual Plasticity in Morbidly Obese Subjects. IScience, 2019, 22, 206-213.	1.9	20
24	Auditory Perceptual History Is Propagated through Alpha Oscillations. Current Biology, 2019, 29, 4208-4217.e3.	1.8	30
25	Plasticity of the human visual brain after an early cortical lesion. Neuropsychologia, 2019, 128, 166-177.	0.7	23
26	Rythmic modulation of V1 BOLD response (7T) after a Voluntary action. Journal of Vision, 2019, 19, 289.	0.1	0
27	Supramodal agnosia for oblique mirror orientation in patients with periventricular leukomalacia. Cortex, 2018, 103, 179-198.	1.1	6
28	Perception during double-step saccades. Scientific Reports, 2018, 8, 320.	1.6	18
29	Perceptual Oscillation of Audiovisual Time Simultaneity. ENeuro, 2018, 5, ENEURO.0047-18.2018.	0.9	25
30	Rhythmic motor behaviour influences perception of visual time. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181597.	1.2	12
31	Vision During Saccadic Eye Movements. Annual Review of Vision Science, 2018, 4, 193-213.	2.3	86
32	Cortical BOLD responses to moderate- and high-speed motion in the human visual cortex. Scientific Reports, 2018, 8, 8357.	1.6	8
33	Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD. ELife, 2018, 7, .	2.8	65
34	Ocular dominance plasticity in obese subjects can be restored by weight loss. Journal of Vision, 2018, 18, 944.	0.1	0
35	Temporally evolving gain mechanisms of attention in macaque area V4. Journal of Neurophysiology, 2017, 118, 964-985.	0.9	16
36	Visual information from observing grasping movement in allocentric and egocentric perspectives: development in typical children. Experimental Brain Research, 2017, 235, 2039-2047.	0.7	3

#	Article	IF	CITATIONS
37	Saccadic Suppression Is Embedded Within Extended Oscillatory Modulation of Sensitivity. Journal of Neuroscience, 2017, 37, 3661-3670.	1.7	66
38	Autism is associated with reduced ability to interpret grasping actions of others. Scientific Reports, 2017, 7, 12687.	1.6	7
39	Area Prostriata in the Human Brain. Current Biology, 2017, 27, 3056-3060.e3.	1.8	43
40	Spatial localization of sound elicits early responses from occipital visual cortex in humans. Scientific Reports, 2017, 7, 10415.	1.6	34
41	Auditory Sensitivity and Decision Criteria Oscillate at Different Frequencies Separately for the Two Ears. Current Biology, 2017, 27, 3643-3649.e3.	1.8	61
42	Early Cross-modal Plasticity in Adults. Journal of Cognitive Neuroscience, 2017, 29, 520-529.	1.1	11
43	Plasticity of Visual Pathways and Function in the Developing Brain: Is the Pulvinar a Crucial Player?. Frontiers in Systems Neuroscience, 2017, 11, 3.	1.2	27
44	Short-term monocular deprivation enhances 7T BOLD responses and reduces neural selectivity in V1. Journal of Vision, 2017, 17, 577.	0.1	7
45	Rhythmic modulation of human visual sensitivity synchronized with planning of saccades. Journal of Vision, 2017, 17, 922.	0.1	0
46	Adaptation to size affects saccades with long but not short latencies. Journal of Vision, 2016, 16, 2.	0.1	5
47	Binocular Rivalry Measured 2 Hours After Occlusion Therapy Predicts the Recovery Rate of the Amblyopic Eye in Anisometropic Children., 2016, 57, 1537.		30
48	Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis. PLoS Biology, 2016, 14, e1002569.	2.6	50
49	Perceived visual time depends on motor preparation and direction of hand movements. Scientific Reports, 2016, 6, 27947.	1.6	30
50	Rhythmic modulation of visual contrast discrimination triggered by action. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160692.	1.2	52
51	Effects of adaptation on numerosity decoding in the human brain. Neurolmage, 2016, 143, 364-377.	2.1	83
52	Visual Plasticity: Blindsight Bridges Anatomy and Function in the Visual System. Current Biology, 2016, 26, R70-R73.	1.8	71
53	A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners. Behavior Research Methods, 2016, 48, 614-620.	2.3	15
54	Nonretinotopic visual processing in the brain. Visual Neuroscience, 2015, 32, E017.	0.5	37

#	Article	IF	CITATIONS
55	Shortâ€term monocular deprivation alters early components of visual evoked potentials. Journal of Physiology, 2015, 593, 4361-4372.	1.3	93
56	BOLD Response Selective to Flow-Motion in Very Young Infants. PLoS Biology, 2015, 13, e1002260.	2.6	88
57	Short-Term Monocular Deprivation Alters GABA in the Adult Human Visual Cortex. Current Biology, 2015, 25, 1496-1501.	1.8	177
58	Strong Motion Deficits in Dyslexia Associated with DCDC2 Gene Alteration. Journal of Neuroscience, 2015, 35, 8059-8064.	1.7	35
59	Time, number and attention in very low birth weight children. Neuropsychologia, 2015, 73, 60-69.	0.7	20
60	Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action. Journal of Neuroscience, 2015, 35, 7019-7029.	1.7	97
61	Visual mislocalization during saccade sequences. Experimental Brain Research, 2015, 233, 577-585.	0.7	22
62	Motor Commands Induce Time Compression for Tactile Stimuli. Journal of Neuroscience, 2014, 34, 9164-9172.	1.7	37
63	Auditory and Tactile Signals Combine to Influence Vision during Binocular Rivalry. Journal of Neuroscience, 2014, 34, 784-792.	1.7	53
64	Motor Commands Induce Time Compression for Tactile Stimuli. Procedia, Social and Behavioral Sciences, 2014, 126, 100-101.	0.5	4
65	The visual component to saccadic compression. Journal of Vision, 2014, 14, 13-13.	0.1	16
66	Buildup of spatial information over time and across eye-movements. Behavioural Brain Research, 2014, 275, 281-287.	1.2	24
67	Visual Stability During Saccades is Achieved through Transient Changes in Perceptual Space and Time. Procedia, Social and Behavioral Sciences, 2014, 126, 94-95.	0.5	1
68	Rhythmic Oscillations of Visual Contrast Sensitivity Triggered by Voluntary Action and their Link to Perceived Time Compression. Procedia, Social and Behavioral Sciences, 2014, 126, 98-99.	0.5	2
69	Development of visual BOLD response in infants. Journal of Vision, 2014, 14, 14-14.	0.1	1
70	Transient monocular deprivation affects binocular rivalry and GABA concentrations in adult human visual cortex Journal of Vision, 2014, 14, 378-378.	0.1	0
71	Contextual effects in interval-duration judgements in vision, audition and touch. Experimental Brain Research, 2013, 230, 87-98.	0.7	29
72	Blindsight in children with congenital and acquired cerebral lesions. Cortex, 2013, 49, 1636-1647.	1.1	36

#	Article	IF	CITATIONS
73	Blood Oxygen Level-Dependent Activation of the Primary Visual Cortex Predicts Size Adaptation Illusion. Journal of Neuroscience, 2013, 33, 15999-16008.	1.7	73
74	Spatiotopic neural representations develop slowly across saccades. Current Biology, 2013, 23, R193-R194.	1.8	59
75	Spatio-temporal topography of saccadic overestimation of time. Vision Research, 2013, 83, 56-65.	0.7	10
76	Long Integration Time for Accelerating and Decelerating Visual, Tactile and Visuo-tactile Stimuli. Multisensory Research, 2013, 26, 53-68.	0.6	8
77	Early Interaction between Vision and Touch during Binocular Rivalry. Multisensory Research, 2013, 26, 291-306.	0.6	23
78	A Mechanism for Detecting Coincidence of Auditory and Visual Spatial Signals. Multisensory Research, 2013, 26, 333-345.	0.6	2
79	Selective Tuning for Contrast in Macaque Area V4. Journal of Neuroscience, 2013, 33, 18583-18596.	1.7	23
80	Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color. Journal of Vision, 2013, 13, 1-1.	0.1	95
81	BOLD human responses to chromatic spatial features. European Journal of Neuroscience, 2013, 38, 2290-2299.	1.2	17
82	Spatial Position Information Accumulates Steadily over Time. Journal of Neuroscience, 2013, 33, 18396-18401.	1.7	48
83	Transient spatiotopic integration across saccadic eye movements mediates visual stability. Journal of Neurophysiology, 2013, 109, 1117-1125.	0.9	62
84	Editorial on the Launch of Multisensory Research; A Journal of Scientific Research on All Aspects of Multisensory Processing. Multisensory Research, 2013, 26, 1-2.	0.6	4
85	Spatiotemporal filtering and motion illusions. Journal of Vision, 2013, 13, 21-21.	0.1	3
86	Non-monotonic Contrast Tuning in macaque area V4. Journal of Vision, 2013, 13, 35-35.	0.1	0
87	A mechanism for detecting coincidence of auditory and visual spatial signals. Multisensory Research, 2013, 26, 333-45.	0.6	1
88	Visual motion distorts visual and motor space. Journal of Vision, 2012, 12, 10-10.	0.1	18
89	Constructing Stable Spatial Maps of the Word. Perception, 2012, 41, 1355-1372.	0.5	40
90	Saccadic Compression of Symbolic Numerical Magnitude. PLoS ONE, 2012, 7, e49587.	1.1	16

#	Article	IF	CITATIONS
91	"Non-retinotopic processing" in Ternus motion displays modeled by spatiotemporal filters. Journal of Vision, 2012, 12, 10-10.	0.1	41
92	Spatiotemporal dynamics of perisaccadic remapping in humans revealed by classification images. Journal of Vision, 2012, 12, 11-11.	0.1	4
93	Active movement restores veridical event-timing after tactile adaptation. Journal of Neurophysiology, 2012, 108, 2092-2100.	0.9	25
94	Visual perception at the time of successive saccades. Journal of Vision, 2012, 12, 1255-1255.	0.1	2
95	Saccades Compress Space, Time, and Number. , 2011, , 175-186.		8
96	Spatiotopic selectivity of adaptation-based compression of event duration. Journal of Vision, 2011, 11, 21-21.	0.1	47
97	Spatiotemporal profile of peri-saccadic contrast sensitivity. Journal of Vision, 2011, 11, 15-15.	0.1	38
98	Perceived duration of Visual and Tactile Stimuli Depends on Perceived Speed. Frontiers in Integrative Neuroscience, 2011, 5, 51.	1.0	53
99	Spatiotopic Coding of BOLD Signal in Human Visual Cortex Depends on Spatial Attention. PLoS ONE, 2011, 6, e21661.	1.1	76
100	Underestimation of perceived number at the time of saccades. Vision Research, 2011, 51, 34-42.	0.7	25
101	50th Anniversary special issue of vision research. Vision Research, 2011, 51, 601-602.	0.7	O
102	50th Anniversary Special Issue of Vision Research – Volume 2. Vision Research, 2011, 51, 1377-1378.	0.7	0
103	Brief periods of monocular deprivation disrupt ocular balance in human adult visual cortex. Current Biology, 2011, 21, R538-R539.	1.8	156
104	Spatiotopic Visual Maps Revealed by Saccadic Adaptation in Humans. Current Biology, 2011, 21, 1380-1384.	1.8	35
105	Visual information gleaned by observing grasping movement in allocentric and egocentric perspectives. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2142-2149.	1.2	17
106	Spatiotopic coding and remapping in humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 504-515.	1.8	108
107	Editorial. Seeing and Perceiving, 2011, 24, 201.	0.4	0
108	Spatial attention affects perceived stimulus position. Journal of Vision, 2011, 11, 229-229.	0.1	0

#	Article	IF	CITATIONS
109	Saccadic adaptation fields have a visual component anchored in spatiotopic coordinates. Journal of Vision, 2011, 11, 540-540.	0.1	О
110	Pronounced visual motion deficits in developmental dyslexia associated with a specific genetic phenotype. Journal of Vision, 2011, 11, 428-428.	0.1	0
111	Spatial maps for time and motion. Experimental Brain Research, 2010, 206, 121-128.	0.7	31
112	Touch disambiguates rivalrous perception at early stages of visual analysis. Current Biology, 2010, 20, R143-R144.	1.8	102
113	Vision: Keeping the World Still When the Eyes Move. Current Biology, 2010, 20, R442-R444.	1.8	9
114	Brain Development: Critical Periods for Cross-Sensory Plasticity. Current Biology, 2010, 20, R934-R936.	1.8	17
115	Compression of time during smooth pursuit eye movements. Vision Research, 2010, 50, 2702-2713.	0.7	16
116	Temporal auditory capture does not affect the time course of saccadic mislocalization of visual stimuli. Journal of Vision, 2010, 10, 1-13.	0.1	10
117	Saccades compress space, time and number. Trends in Cognitive Sciences, 2010, 14, 528-533.	4.0	112
118	A blinding flash increases saccadic compression. Journal of Vision, 2010, 2, 569-569.	0.1	3
119	Two systems for spatial location during saccades. Journal of Vision, 2010, 1, 262-262.	0.1	0
120	Shifts in spatial attention affect the perceived duration of events. Journal of Vision, 2009, 9, 9-9.	0.1	40
121	Spatiotemporal Distortions of Visual Perception at the Time of Saccades. Journal of Neuroscience, 2009, 29, 13147-13157.	1.7	88
122	Temporal mechanisms of multimodal binding. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1761-1769.	1.2	47
123	Pooling and segmenting motion signals. Vision Research, 2009, 49, 1065-1072.	0.7	19
124	Auditory dominance over vision in the perception of interval duration. Experimental Brain Research, 2009, 198, 49-57.	0.7	202
125	Inversion of Perceived Direction of Motion Caused by Spatial Undersampling in Two Children with Periventricular Leukomalacia. Journal of Cognitive Neuroscience, 2008, 20, 1094-1106.	1.1	15
126	BOLD response to spatial phase congruency in human brain. Journal of Vision, 2008, 8, 15-15.	0.1	18

#	Article	IF	CITATIONS
127	Fusion of Visual and Auditory Stimuli during Saccades: A Bayesian Explanation for Perisaccadic Distortions. Journal of Neuroscience, 2007, 27, 8525-8532.	1.7	44
128	Influence of saccadic adaptation on spatial localization: Comparison of verbal and pointing reports. Journal of Vision, 2007, 7, 16.	0.1	42
129	Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nature Neuroscience, 2007, 10, 249-255.	7.1	141
130	Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nature Neuroscience, 2007, 10, 423-425.	7.1	230
131	The role of perceptual learning on modality-specific visual attentional effects. Vision Research, 2007, 47, 60-70.	0.7	7
132	The effect of optokinetic nystagmus on the perceived position of briefly flashed targets. Vision Research, 2007, 47, 861-868.	0.7	17
133	The lowest spatial frequency channel determines brightness perception. Vision Research, 2007, 47, 1282-1291.	0.7	16
134	Development of Saccadic Suppression in Children. Journal of Neurophysiology, 2006, 96, 1011-1017.	0.9	10
135	Resolution for spatial segregation and spatial localization by motion signals. Vision Research, 2006, 46, 932-939.	0.7	12
136	Time Perception: Space–Time in the Brain. Current Biology, 2006, 16, R171-R173.	1.8	36
137	Perception: Transient Disruptions to Neural Space–Time. Current Biology, 2006, 16, R847-R849.	1.8	11
138	Separate attentional resources for vision and audition. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1339-1345.	1.2	120
139	A feature-tracking model simulates the motion direction bias induced by phase congruency. Journal of Vision, 2006, 6, 1.	0.1	2
140	Saccadic eye movements cause compression of time as well as space. Nature Neuroscience, 2005, 8, 950-954.	7.1	391
141	Eye Movements: Building a Stable World from Glance to Glance. Current Biology, 2005, 15, R839-R840.	1.8	10
142	Seeing and ballistic pointing at perisaccadic targets. Journal of Vision, 2005, 5, 7.	0.1	29
143	Higher-level mechanisms detect facial symmetry. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1379-1384.	1.2	51
144	In Vivo Calcium Imaging of Circuit Activity in Cerebellar Cortex. Journal of Neurophysiology, 2005, 94, 1636-1644.	0.9	116

#	Article	IF	CITATIONS
145	Neuronal Mechanisms for Illusory Brightness Perception in Humans. Neuron, 2005, 47, 645-651.	3.8	57
146	Different attentional resources modulate the gain mechanisms for color and luminance contrast. Vision Research, 2004, 44, 1389-1401.	0.7	60
147	The role of attention in central and peripheral motion integration. Vision Research, 2004, 44, 1367-1374.	0.7	17
148	Spatiotopic temporal integration of visual motion across saccadic eye movements. Nature Neuroscience, 2003, 6, 877-881.	7.1	177
149	A feature–based model of symmetry detection. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1727-1733.	1.2	36
150	Saccadic compression can improve detection of Glass patterns. Vision Research, 2002, 42, 1361-1366.	0.7	5
151	Color and Luminance Contrasts Attract Independent Attention. Current Biology, 2002, 12, 1134-1137.	1.8	90
152	Changes in visual perception at the time of saccades. Trends in Neurosciences, 2001, 24, 113-121.	4.2	527
153	Response: â€~Saccadic suppression' – no need for an active extra-retinal mechanism. Trends in Neurosciences, 2001, 24, 317-318.	4.2	9
154	Automatic gain control contrast mechanisms are modulated by attention in humans: evidence from visual evoked potentials. Vision Research, 2001, 41, 2435-2447.	0.7	111
155	Separate visual representations for perception and action revealed by saccadic eye movements. Current Biology, 2001, 11, 798-802.	1.8	106
156	A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience, 2000, 3, 1322-1328.	7.1	358
157	Extraretinal Control of Saccadic Suppression. Journal of Neuroscience, 2000, 20, 3449-3455.	1.7	249
158	Saccadic suppression precedes visual motion analysis. Current Biology, 1999, 9, 1207-1209.	1.8	38
159	Cardinal directions for visual optic flow. Current Biology, 1999, 9, 763-766.	1.8	50
160	The effects of ageing on reaction times to motion onset. Vision Research, 1999, 39, 2157-2164.	0.7	53
161	Developmental changes in optokinetic mechanisms in the absence of unilateral cortical control. NeuroReport, 1999, 10, 2723-2729.	0.6	31
162	Seeing biological motion. Nature, 1998, 395, 894-896.	13.7	304

#	Article	IF	CITATIONS
163	Large receptive fields for optic flow detection in humans. Vision Research, 1998, 38, 1731-1743.	0.7	98
164	Motion analysis by feature tracking. Vision Research, 1998, 38, 3633-3653.	0.7	39
165	Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed. Vision Research, 1998, 38, 3681-3690.	0.7	66
166	Capture and transparency in coarse quantized images. Vision Research, 1997, 37, 2609-2629.	0.7	22
167	Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements. Journal of Neuroscience, 1997, 17, 7941-7953.	1.7	160
168	Compression of visual space before saccades. Nature, 1997, 386, 598-601.	13.7	678
169	Sensitivity to spatial phase at equiluminance. Vision Research, 1996, 36, 1153-1162.	0.7	8
170	Temporal Impulse Response Functions for Luminance and Colour During Saccades. Vision Research, 1996, 36, 2069-2078.	0.7	84
171	Visual Ageing: Unspecific Decline of the Responses to Luminance and Colour. Vision Research, 1996, 36, 3557-3566.	0.7	104
172	Development of the Temporal Properties of Visual Evoked Potentials to Luminance and Colour Contrast in Infants. Vision Research, 1996, 36, 3141-3155.	0.7	55
173	Suppression of the magnocellular pathway during saccades. Behavioural Brain Research, 1996, 80, 1-8.	1.2	92
174	An adaptive approach to scale selection for line and edge detection. Pattern Recognition Letters, 1995, 16, 667-677.	2.6	25
175	Two stages of visual processing for radial and circular motion. Nature, 1995, 376, 507-509.	13.7	227
176	Spatial structure of chromatically opponent receptive fields in the human visual system. Visual Neuroscience, 1995, 12, 103-116.	0.5	20
177	Pattern-reversal electroretinogram in response to chromatic stimuli: I Humans. Visual Neuroscience, 1994, 11, 861-871.	0.5	29
178	Spatial neglect is associated with increased latencies of visual evoked potentials. Visual Neuroscience, 1994, 11, 909-918.	0.5	91
179	Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature, 1994, 371, 511-513.	13.7	636
180	The pattern electroretinogram in response to colour contrast in man and monkey. International Journal of Psychophysiology, 1994, 16, 185-189.	0.5	4

#	Article	IF	CITATIONS
181	Illusory brightness step in the chevreul illusion. Vision Research, 1994, 34, 1567-1574.	0.7	18
182	The Role of Features in Structuring Visual Images. Novartis Foundation Symposium, 1994, 184, 129-146.	1.2	9
183	Development of infant contrast sensitivity to chromatic stimuli. Vision Research, 1993, 33, 2535-2552.	0.7	77
184	A Model of Human Feature Detection Based on Matched Filters. , 1993, , 43-63.		5
185	Electro-physiological investigation of edge-selective mechanisms of human vision. Vision Research, 1992, 32, 239-247.	0.7	9
186	The effects of ageing on the pattern electroretinogram and visual evoked potential in humans. Vision Research, 1992, 32, 1199-1209.	0.7	131
187	Two-dimensional spatial and spatial-frequency selectivity of motion-sensitive mechanisms in human vision. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1991, 8, 1340.	0.8	68
188	Feature detection in biological and artificial visual systems. , 1991, , 185-194.		4
189	Development of visual inhibitory interactions in kittens. Visual Neuroscience, 1991, 7, 321-334.	0.5	7
190	Effects of monocular deprivation on the development of visual inhibitory interactions in kittens. Visual Neuroscience, 1991, 7, 335-343.	0.5	7
191	Development of contrast sensitivity and acuity of the infant colour system. Proceedings of the Royal Society B: Biological Sciences, 1990, 242, 134-139.	1.2	25
192	Evidence for edge and bar detectors in human vision. Vision Research, 1989, 29, 419-431.	0.7	118
193	Discrimination of spatial phase in central and peripheral vision. Vision Research, 1989, 29, 433-445.	0.7	49
194	The conditions under which Mach bands are visible. Vision Research, 1989, 29, 699-715.	0.7	75
195	Feature detection in human vision: a phase-dependent energy model. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1988, 235, 221-245.	1.8	542
196	Inhibitory interactions in the human vision system revealed in patternâ€evoked potentials Journal of Physiology, 1987, 389, 1-21.	1.3	58
197	Electrophysiological correlates of positive and negative afterimages. Vision Research, 1987, 27, 201-207.	0.7	6
198	Feature detection from local energy. Pattern Recognition Letters, 1987, 6, 303-313.	2.6	562

#	Article	IF	Citations
199	Cross-orientation inhibition in cat is GABA mediated. Experimental Brain Research, 1987, 67, 635-44.	0.7	77
200	Visual evoked potentials of cat cortex reveal GABA mediated inhibitory interactions. Behavioural Brain Research, 1986, 20, 125.	1.2	0
201	Smooth and sampled motion. Vision Research, 1986, 26, 643-652.	0.7	88
202	Local and global visual processing. Vision Research, 1986, 26, 749-757.	0.7	10
203	Seeing objects in motion. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1986, 227, 249-265.	1.8	158
204	Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. Journal of Neurophysiology, 1986, 56, 969-986.	0.9	65
205	A Spatial Illusion from Motion Rivalry. Perception, 1986, 15, 59-66.	0.5	14
206	Evidence for the existence and development of visual inhibition in humans. Nature, 1986, 321, 235-237.	13.7	84
207	Mach bands are phase dependent. Nature, 1986, 324, 250-253.	13.7	230
208	Recognition of Positive and Negative Bandpass-Filtered Images. Perception, 1986, 15, 595-602.	0.5	157
209	Local regulation of luminance gain. Vision Research, 1985, 25, 717-727.	0.7	37
210	Visual acuity of neurones in the cat lateral suprasylvian cortex. Brain Research, 1985, 331, 382-385.	1.1	21
211	Noise and recognizability of coarse quantized images (reply). Nature, 1984, 308, 212-212.	13.7	3
212	The role of gammaâ€aminobutyric acid mediated inhibition in the response properties of cat lateral geniculate nucleus neurones Journal of Physiology, 1984, 357, 505-523.	1.3	59
213	Development of gammaâ€aminobutyric acid mediated inhibition of X cells of the cat lateral geniculate nucleus Journal of Physiology, 1984, 357, 525-537.	1.3	20
214	Added noise restores recognizability of coarse quantized images. Nature, 1983, 305, 226-228.	13.7	55
215	Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1982, 216, 335-354.	1.8	357
216	Intra-cortical inhibition prevents simple cells from responding to textured visual patterns. Experimental Brain Research, 1981, 43-43, 455-8.	0.7	50

#	ARTICLE	IF	CITATIONS
217	Two firing patterns in the discharge of complex cells encoding different attributes of the visual stimulus. Experimental Brain Research, 1981, 43, 115-8.	0.7	51
218	A comparison of the responses of single cells in the LGN and visual cortex to bar and noise stimuli in the cat. Vision Research, 1980, 20, 771-777.	0.7	14
219	A Perceptual Phenomenon and its Neurophysiological Correlate. Perception, 1979, 8, 43-46.	0.5	5
220	Responses of visual cortical cells to periodic and non-periodic stimuli Journal of Physiology, 1979, 296, 27-47.	1.3	56