Ana M Poveda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/28857/publications.pdf

Version: 2024-02-01

62 papers 2,039 citations

257450 24 h-index 254184 43 g-index

64 all docs 64
docs citations

64 times ranked 2504 citing authors

#	Article	IF	CITATIONS
1	Introducing the Catalytic Amination of Silanes via Nitrene Insertion. Journal of the American Chemical Society, 2022, 144, 10608-10614.	13.7	6
2	Synthesis and chelation study of a fluoroionophore and a glycopeptide based on an aza crown iminosugar structure. Carbohydrate Research, 2021, 501, 108258.	2.3	1
3	Enzymatic Synthesis of Phloretin αâ€Glucosides Using a Sucrose Phosphorylase Mutant and its Effect on Solubility, Antioxidant Properties and Skin Absorption. Advanced Synthesis and Catalysis, 2021, 363, 3079-3089.	4.3	10
4	Iminosugar C â€Glycosides Work as Pharmacological Chaperones of NAGLU, a Glycosidase Involved in MPS IIIB Rare Disease**. Chemistry - A European Journal, 2021, 27, 11291-11297.	3.3	4
5	Polyglucosylation of Rutin Catalyzed by Cyclodextrin Glucanotransferase from <i>Geobacillus</i> sp.: Optimization and Chemical Characterization of Products. Industrial & Degraphic Engineering Chemistry Research, 2021, 60, 18651-18659.	3.7	6
6	The Flexibility of Oligosaccharides Unveiled Through Residual Dipolar Coupling Analysis. Frontiers in Molecular Biosciences, 2021, 8, 784318.	3.5	7
7	Exploiting structure–activity relationships of QS-21 in the design and synthesis of streamlined saponin vaccine adjuvants. Chemical Communications, 2020, 56, 719-722.	4.1	16
8	Synthesis, Conformational Analysis, and Complexation Study of an Iminosugar-Aza-Crown, a Sweet Chiral Cyclam Analog. Organic Letters, 2020, 22, 2344-2349.	4.6	10
9	Isolation and characterization of an exopolymer produced by Bacillus licheniformis: In vitro antiviral activity against enveloped viruses. Carbohydrate Polymers, 2020, 248, 116737.	10.2	10
10	Selective Synthesis of Galactooligosaccharides Containing $\hat{l}^2(1\hat{a}\dagger^3)$ Linkages with \hat{l}^2 -Galactosidase from <i>Bifidobacterium bifidum</i> (Saphera). Journal of Agricultural and Food Chemistry, 2020, 68, 4930-4938.	5.2	27
11	Recent advances in the application of NMR methodologies to analyze the conformation, dynamics, and interactions of saccharides. Carbohydrate Chemistry, 2020, , 170-194.	0.3	O
12	Efficient production of isomelezitose by a glucosyltransferase activity in <i>Metschnikowia reukaufii</i> cell extracts. Microbial Biotechnology, 2019, 12, 1274-1285.	4.2	15
13	Well-Defined Oligo- and Polysaccharides as Ideal Probes for Structural Studies. Journal of the American Chemical Society, 2018, 140, 5421-5426.	13.7	82
14	The Acidity of a Carbon Nucleophile Dictates Enantioselectivity and Reactivity in Michael Additions to Aromatic and Aliphatic Enals via Iminium Activation. ACS Catalysis, 2018, 8, 22-34.	11.2	13
15	Optimization of Regioselective α-Glucosylation of Hesperetin Catalyzed by Cyclodextrin Glucanotransferase. Molecules, 2018, 23, 2885.	3.8	19
16	Zwitterionic Polysaccharides of Shigella sonnei: Synthetic Study toward a Ready-for-Oligomerization Building Block Made of Two Rare Amino Sugars. Synthesis, 2018, 50, 4270-4282.	2.3	6
17	Fructosylation of Hydroxytyrosol by the βâ€Fructofuranosidase from Xanthophyllomyces dendrorhous : Insights into the Molecular Basis of the Enzyme Specificity. ChemCatChem, 2018, 10, 4878-4887.	3.7	14
18	Efficient \hat{l} ±-Glucosylation of Epigallocatechin Gallate Catalyzed by Cyclodextrin Glucanotransferase from <i>Thermoanaerobacter</i> Species. Journal of Agricultural and Food Chemistry, 2018, 66, 7402-7408.	5.2	20

#	Article	IF	CITATIONS
19	Enzymatic Synthesis of a Novel Pterostilbene α-Glucoside by the Combination of Cyclodextrin Glucanotransferase and Amyloglucosidase. Molecules, 2018, 23, 1271.	3.8	19
20	Enzymatic Synthesis of a Novel Neuroprotective Hydroxytyrosyl Glycoside. Journal of Agricultural and Food Chemistry, 2017, 65, 10526-10533.	5.2	30
21	Glycans in Infectious Diseases. A Molecular Recognition Perspective. Current Medicinal Chemistry, 2017, 24, 4057-4080.	2.4	13
22	Exploring the transferase activity of Ffase from Schwanniomyces occidentalis, a \hat{l}^2 -fructofuranosidase showing high fructosyl-acceptor promiscuity. Applied Microbiology and Biotechnology, 2016, 100, 8769-8778.	3.6	16
23	Conformational Plasticity in Glycomimetics: Fluorocarbamethylâ€ <scp>L</scp> â€idopyranosides Mimic the Intrinsic Dynamic Behaviour of Natural Idose Rings. Chemistry - A European Journal, 2015, 21, 10513-10521.	3.3	16
24	Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: Effect of reaction conditions. Journal of Molecular Catalysis B: Enzymatic, 2015, 119, 18-25.	1.8	66
25	Cooperative Hydrogen Bonding in Glyco–Oligoamides: DNA Minor Groove Binders in Aqueous Media. Chemistry - A European Journal, 2014, 20, 17640-17652.	3.3	8
26	Regioselective synthesis of neo-erlose by the \hat{l}^2 -fructofuranosidase from Xanthophyllomyces dendrorhous. Process Biochemistry, 2014, 49, 423-429.	3.7	18
27	Production of fructooligosaccharides by mycelium-bound transfructosylation activity present in Cladosporium cladosporioides and Penicilium sizovae. Process Biochemistry, 2014, 49, 2174-2180.	3.7	36
28	Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation. Interface Focus, 2014, 4, 20130040.	3.0	53
29	Experimental and computational studies on the mechanism of the Pd-catalyzed C(sp3)–H γ-arylation of amino acid derivatives assisted by the 2-pyridylsulfonyl group. Chemical Science, 2014, 5, 3873-3882.	7.4	38
30	Anti-inflammatory properties of phenolic lactones isolated from Caesalpinia paraguariensis stem bark. Journal of Ethnopharmacology, 2013, 147, 63-73.	4.1	15
31	Epoxide Opening versus Silica Condensation during Sol–Gel Hybrid Biomaterial Synthesis. Chemistry - A European Journal, 2013, 19, 7856-7864.	3.3	59
32	Interactions of Bacterial Cell Division Protein FtsZ with C8-Substituted Guanine Nucleotide Inhibitors. A Combined NMR, Biochemical and Molecular Modeling Perspective. Journal of the American Chemical Society, 2013, 135, 16418-16428.	13.7	28
33	Galacto-oligosaccharide Synthesis from Lactose Solution or Skim Milk Using the \hat{I}^2 -Galactosidase from Bacillus circulans. Journal of Agricultural and Food Chemistry, 2012, 60, 6391-6398.	5.2	96
34	Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresource Technology, 2012, 109, 123-130.	9.6	61
35	Production of Galacto-oligosaccharides by the \hat{I}^2 -Galactosidase from Kluyveromyces lactis: Comparative Analysis of Permeabilized Cells versus Soluble Enzyme. Journal of Agricultural and Food Chemistry, 2011, 59, 10477-10484.	5.2	92
36	Enzymatic Synthesis of αâ€Glucosides of Resveratrol with Surfactant Activity. Advanced Synthesis and Catalysis, 2011, 353, 1077-1086.	4.3	64

#	Article	IF	CITATIONS
37	Diastereodivergent Synthesis of Benzylic Quaternary Centers Mediated by a Remote Sulfinyl Group: Spectroscopic Evidence of the Structure of the Carbanionic Intermediates. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1119-1129.	1.6	O
38	Stereodivergent Quaternization of 2â€Alkylâ€2â€∢i>pàâ€tolylsulfinylacetonitriles: NMR Spectroscopic Evidence of Planar and Pyramidal Benzylic Carbanions. Chemistry - A European Journal, 2010, 16, 6317-6325.	3.3	24
39	Regioselective Lipase-Catalyzed Synthesis of 3- <i>O</i> -Acyl Derivatives of Resveratrol and Study of Their Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2010, 58, 807-813.	5.2	68
40	Asymmetric Synthesis of Indolines through Intramolecular Shifting of Aromatic Sulfinyl Groups. Role of the π,π-Stacking Interactions in these Unusual S _N Ar Processes. Journal of the American Chemical Society, 2009, 131, 9432-9441.	13.7	38
41	Light-Induced Aminocarbene to Imine Dyotropic Rearrangement in a Chromium(0) Center:  An Unprecedented Reaction Pathway. Journal of the American Chemical Society, 2003, 125, 9572-9573.	13.7	37
42	Control of disaccharide conformation by π-stacking. Canadian Journal of Chemistry, 2003, 81, 364-375.	1.1	8
43	Conformational Behavior of C-Glycosyl Analogues of Sialyl-α-(2→3)-Galactose. European Journal of Organic Chemistry, 2000, 2000, 1805-1813.	2.4	24
44	Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Chemistry and Biology, 2000, 7, 529-543.	6.0	131
45	The conformation of C-glycosyl compounds. Advances in Carbohydrate Chemistry and Biochemistry, 2000, 56, 235-284.	0.9	59
46	Free and protein-bound carbohydrate structures. Current Opinion in Structural Biology, 1999, 9, 549-555.	5.7	119
47	Synthesis and Conformational Analysis of a Conformationally Constrained Trisaccharide, and Complexation Properties with Concanavalin A. Chemistry - A European Journal, 1999, 5, 2281-2294.	3.3	36
48	A comparison and chemometric analysis of several molecular mechanics force fields and parameter sets applied to carbohydrates. Carbohydrate Research, 1998, 314, 141-155.	2.3	150
49	Solution conformation and dynamics of a fungal cell wall polysaccharide isolated from Microsporum gypseum. Glycoconjugate Journal, 1998, 15, 309-321.	2.7	10
50	Electrophoretic behavior and size distribution of the acidic polysaccharides produced by the bacteriaBradyrhizobium (Chamaecytisus) strain BGA-1 andBradyrhizobium japonicum USDA 110. Electrophoresis, 1998, 19, 2621-2624.	2.4	8
51	NMR studies of carbohydrate–protein interactions in solution. Chemical Society Reviews, 1998, 27, 133.	38.1	105
52	Solution conformation and dynamics of a tetrasaccharide related to the Lewis(x) antigen deduced by NMR relaxation measurements. Journal of Biomolecular NMR, 1997, 10, 29-43.	2.8	46
53	Applications of nuclear magnetic resonance spectroscopy and molecular modeling to the study of protein-carbohydrate interactions. Journal of Molecular Graphics and Modelling, 1997, 15, 9-17.	2.4	15
54	Solution conformation dynamics of a tetrasaccharide related to the Lewisx antigen deduced by 1H NMR NOESY, ROESY, and T-ROESY measurements. Carbohydrate Research, 1997, 300, 3-10.	2.3	18

#	Article	IF	CITATION
55	NMR experiments for the detection of NOEs and scalar coupling constants between equivalent protons in trehalose-containing molecules. Carbohydrate Research, 1997, 301, 5-10.	2.3	18
56	Studies on the structure and the solution conformation of an acidic extracellular polysaccharide isolated from Bradyrhizobium. Carbohydrate Research, 1997, 304, 209-217.	2.3	21
57	Solution conformation and dynamics of an extracellular polysaccharide isolated from Bradyrhyzobium as deduced from 1H-NMR off resonance ROESY and 13C-NMR relaxation measurements. Carbohydrate Research, 1997, 304, 219-228.	2.3	10
58	Structure of complex cell wall polysaccharides isolated from Trichoderma and Hypocrea species. Carbohydrate Research, 1997, 304, 281-291.	2.3	37
59	Exploration of the conformational flexibility of the LeXrelated oligosaccharide Chemical Communications, 1996, , 421-422.	4.1	12
60	New one-step process for the synthesis of functionalized 1,6-dioxaspiro[4,5]decanes. Tetrahedron, 1995, 51, 8507-8524.	1.9	13
61	New chiral crown ethers derived from camphor and their application to asymmetric Michael addition. First attempts to rationalize enantioselection by AM1 and AMBER calculations. Tetrahedron: Asymmetry, 1994, 5, 935-948.	1.8	34
62	Recent advances in the application of NMR methods to uncover the conformation and recognition features of glycans. Carbohydrate Chemistry, 0, , 47-82.	0.3	2