
Karen van Eunen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/288508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The discovAIR project: a roadmap towards the Human Lung Cell Atlas. European Respiratory Journal, 2022, 60, 2102057.	6.7	15
2	Impaired <scp>Very‣owâ€Ðensity Lipoprotein</scp> catabolism links hypoglycemia to hypertriglyceridemia in Glycogen Storage Disease typeÂla. Journal of Inherited Metabolic Disease, 2021, 44, 879-892.	3.6	13
3	Simultaneous Induction of Glycolysis and Oxidative Phosphorylation during Activation of Hepatic Stellate Cells Reveals Novel Mitochondrial Targets to Treat Liver Fibrosis. Cells, 2020, 9, 2456.	4.1	25
4	Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. Journal of Cell Biology, 2017, 216, 1567-1577.	5.2	29
5	The promiscuous enzyme medium-chain 3-keto-acyl-CoA thiolase triggers a vicious cycle in fatty-acid beta-oxidation. PLoS Computational Biology, 2017, 13, e1005461.	3.2	23
6	Translational Targeted Proteomics Profiling of Mitochondrial Energy Metabolic Pathways in Mouse and Human Samples. Journal of Proteome Research, 2016, 15, 3204-3213.	3.7	40
7	A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nature Communications, 2016, 7, 13254.	12.8	113
8	Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders. BMC Biology, 2016, 14, 107.	3.8	27
9	Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1. PLoS ONE, 2015, 10, e0136364.	2.5	97
10	Short-Chain Fatty Acids Protect Against High-Fat Diet–Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes, 2015, 64, 2398-2408.	0.6	734
11	Molecular mechanisms of mTOR regulation by stress. Molecular and Cellular Oncology, 2015, 2, e970489.	0.7	62
12	The importance and challenges of in vivo-like enzyme kinetics. Perspectives in Science, 2014, 1, 126-130.	0.6	39
13	The Short-Chain Fatty Acid Uptake Fluxes by Mice on a Guar Gum Supplemented Diet Associate with Amelioration of Major Biomarkers of the Metabolic Syndrome. PLoS ONE, 2014, 9, e107392.	2.5	63
14	The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 2013, 54, 2325-2340.	4.2	3,292
15	Biochemical Competition Makes Fatty-Acid β-Oxidation Vulnerable to Substrate Overload. PLoS Computational Biology, 2013, 9, e1003186.	3.2	58
16	Testing Biochemistry Revisited: How In Vivo Metabolism Can Be Understood from In Vitro Enzyme Kinetics. PLoS Computational Biology, 2012, 8, e1002483.	3.2	88
17	Metabolic regulation rather than <i>de novo</i> enzyme synthesis dominates the osmoâ€adaptation of yeast. Yeast, 2011, 28, 43-53.	1.7	37
18	Quantitative Analysis of Flux Regulation Through Hierarchical Regulation Analysis. Methods in Enzymology, 2011, 500, 571-595.	1.0	12

#	Article	IF	CITATIONS
19	Measuring enzyme activities under standardized <i>inâ€∫vivo</i> â€like conditions for systems biology. FEBS Journal, 2010, 277, 749-760.	4.7	147
20	Timeâ€dependent regulation analysis dissects shifts between metabolic and geneâ€expression regulation during nitrogen starvation in baker's yeast. FEBS Journal, 2009, 276, 5521-5536.	4.7	24