David W Goodrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2884063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Vesicles from Pancreatic Cancer Stem Cells Lead an Intratumor Communication Network (EVNet) to fuel tumour progression. Gut, 2022, 71, 2043-2068.	12.1	53
2	<i>RB1</i> , Cancer Lineage Plasticity, and Therapeutic Resistance. Annual Review of Cancer Biology, 2022, 6, 201-221.	4.5	5
3	Retinoblastoma Protein Paralogs and Tumor Suppression. Frontiers in Genetics, 2022, 13, 818719.	2.3	5
4	A Preclinical Study to Repurpose Spironolactone for Enhancing Chemotherapy Response in Bladder Cancer. Molecular Cancer Therapeutics, 2022, 21, 786-798.	4.1	3
5	MDM2 E3 ligase activity is essential for p53 regulation and cell cycle integrity. PLoS Genetics, 2022, 18, e1010171.	3.5	7
6	Single-Cell Analyses of a Novel Mouse Urothelial Carcinoma Model Reveal a Role of Tumor-Associated Macrophages in Response to Anti-PD-1 Therapy. Cancers, 2022, 14, 2511.	3.7	1
7	A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. Journal of Clinical Investigation, 2022, 132, .	8.2	21
8	Differential expression of αVβ3 and αVβ6 integrins in prostate cancer progression. PLoS ONE, 2021, 16, e0244985.	2.5	16
9	Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Science Advances, 2021, 7, .	10.3	37
10	Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell, 2021, 39, 1115-1134.e12.	16.8	86
11	An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nature Cell Biology, 2021, 23, 1023-1034.	10.3	72
12	Vitamin D3 Metabolites Demonstrate Prognostic Value in EGFR-Mutant Lung Adenocarcinoma and Can be Deployed to Oppose Acquired Therapeutic Resistance. Cancers, 2020, 12, 675.	3.7	11
13	Understanding Lineage Plasticity as a Path to Targeted Therapy Failure in EGFR-Mutant Non-small Cell Lung Cancer. Frontiers in Genetics, 2020, 11, 281.	2.3	50
14	Pan-cancer molecular analysis of the RB tumor suppressor pathway. Communications Biology, 2020, 3, 158.	4.4	50
15	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	7.0	200
16	Generation of Tumor Organoids from Genetically Engineered Mouse Models of Prostate Cancer. Journal of Visualized Experiments, 2019, , .	0.3	3
17	Cell Cycle and Beyond: Exploiting New RB1 Controlled Mechanisms for Cancer Therapy. Trends in Cancer, 2019, 5, 308-324.	7.4	113
18	Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgenâ€dependent and castrationâ€resistant prostate cancer cells. Prostate, 2019, 79, 140-150.	2.3	24

DAVID W GOODRICH

#	Article	IF	CITATIONS
19	Non-canonical functions of the RB protein in cancer. Nature Reviews Cancer, 2018, 18, 442-451.	28.4	138
20	Mechanisms Behind Resistance to PI3K Inhibitor Treatment Induced by the PIM Kinase. Molecular Cancer Therapeutics, 2018, 17, 2710-2721.	4.1	38
21	An approach for controlling the timing and order of engineered mutations in mice. Genesis, 2018, 56, e23243.	1.6	6
22	Abstract 3016: <i>Ezh2</i> is a dose-dependent mediator of prostate cancer aggressiveness and lineage transformation. Cancer Research, 2018, 78, 3016-3016.	0.9	1
23	<i>Rb1</i> and <i>Trp53</i> cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science, 2017, 355, 78-83.	12.6	767
24	<i>SOX2</i> promotes lineage plasticity and antiandrogen resistance in <i>TP53</i> - and <i>RB1</i> -deficient prostate cancer. Science, 2017, 355, 84-88.	12.6	759
25	Evasion of targeted cancer therapy through stem-cell-like reprogramming. Molecular and Cellular Oncology, 2017, 4, e1291397.	0.7	5
26	TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clinical Cancer Research, 2017, 23, 7072-7083.	7.0	87
27	Generation of a C57BL/6 <i>MYC</i> -Driven Mouse Model and Cell Line of Prostate Cancer. Prostate, 2016, 76, 1192-1202.	2.3	27
28	Combination therapy induces unfolded protein response andÂcytoskeletal rearrangement leading to mitochondrial apoptosis in prostate cancer. Molecular Oncology, 2016, 10, 949-965.	4.6	9
29	Evaluating Effects of Hypomorphic <i>Thoc1</i> Alleles on Embryonic Development in <i>Rb1</i> Null Mice. Molecular and Cellular Biology, 2016, 36, 1621-1627.	2.3	6
30	The Thoc1 Encoded Ribonucleoprotein Is Required for Myeloid Progenitor Cell Homeostasis in the Adult Mouse. PLoS ONE, 2014, 9, e97628.	2.5	6
31	The Thoc1 Ribonucleoprotein and Prostate Cancer Progression. Journal of the National Cancer Institute, 2014, 106, dju306-dju306.	6.3	19
32	The THO Ribonucleoprotein Complex Is Required for Stem Cell Homeostasis in the Adult Mouse Small Intestine. Molecular and Cellular Biology, 2013, 33, 3505-3514.	2.3	11
33	The Thoc1 Encoded Ribonucleoprotein Is a Substrate for the NEDD4-1 E3 Ubiquitin Protein Ligase. PLoS ONE, 2013, 8, e57995.	2.5	3
34	RB1, Development, and Cancer. Current Topics in Developmental Biology, 2011, 94, 129-169.	2.2	146
35	E2f binding-deficient <i>Rb1</i> protein suppresses prostate tumor progression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 704-709.	7.1	41
36	Construction of a dual affinity tagged allele of the <i>Rb1</i> tumor suppressor gene in the mouse. Genesis, 2010, 48, 121-126.	1.6	1

DAVID W GOODRICH

#	Article	IF	CITATIONS
37	<i>Thoc1</i> Deficiency Compromises Gene Expression Necessary for Normal Testis Development in the Mouse. Molecular and Cellular Biology, 2009, 29, 2794-2803.	2.3	34
38	Relationships of hHpr1/p84/Thoc1 expression to clinicopathologic characteristics and prognosis in non-small cell lung cancer. Annals of Clinical and Laboratory Science, 2008, 38, 105-12.	0.2	10
39	Cancer Cells and Normal Cells Differ in Their Requirements for <i>Thoc1</i> . Cancer Research, 2007, 67, 6657-6664.	0.9	43
40	An allelic series for studying the mouseThoc1 gene. Genesis, 2007, 45, 32-37.	1.6	13
41	An E2F Binding-Deficient Rb1 Protein Partially Rescues Developmental Defects Associated with Rb1 Nullizygosity. Molecular and Cellular Biology, 2006, 26, 1527-1537.	2.3	34
42	Thoc1/Hpr1/p84 Is Essential for Early Embryonic Development in the Mouse. Molecular and Cellular Biology, 2006, 26, 4362-4367.	2.3	44
43	Synergy of p53 and Rb Deficiency in a Conditional Mouse Model for Metastatic Prostate Cancer. Cancer Research, 2006, 66, 7889-7898.	0.9	276
44	Pro-Apoptotic Effect of Lenalidomide (L) in Patients with Chronic Lymphocytic Leukemia (CLL) Is Possibly Mediated through Interruption of the Phosphatidylinositol Pathway Blood, 2006, 108, 2102-2102.	1.4	3
45	Characterization of Bortezomib Resistant Human Multiple Myeloma Cell Line (HMCL): A Clinically Relevant Model for Novel Drug Development in Multiple Myeloma (MM) Blood, 2006, 108, 5050-5050.	1.4	0
46	Human hHpr1/p84/Thoc1 Regulates Transcriptional Elongation and Physically Links RNA Polymerase II and RNA Processing Factors. Molecular and Cellular Biology, 2005, 25, 4023-4033.	2.3	56
47	How the other half lives, the amino-terminal domain of the retinoblastoma tumor suppressor protein. Journal of Cellular Physiology, 2003, 197, 169-180.	4.1	29
48	Adenovirus-mediated N5 gene transfer inhibits tumor cell proliferation by induction of apoptosis. Cancer Gene Therapy, 2000, 7, 985-990.	4.6	6
49	Glutamic acid mutagenesis of retinoblastoma protein phosphorylation sites has diverse effects on function. Oncogene, 2000, 19, 562-570.	5.9	33
50	Apoptosis Induced by the Nuclear Death Domain Protein p84N5 Is Associated with Caspase-6 and NF-ήB Activation. Journal of Biological Chemistry, 2000, 275, 25336-25341.	3.4	33
51	Apoptosis Induced by the Nuclear Death Domain Protein p84N5 Is Inhibited by Association with Rb Protein. Molecular Biology of the Cell, 1999, 10, 3251-3261.	2.1	35
52	The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell, 1991, 67, 293-302.	28.9	723