
Jan P Gläscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2883850/publications.pdf

Version: 2024-02-01

IAN D CIÃOCHED

#	Article	IF	CITATIONS
1	States versus Rewards: Dissociable Neural Prediction Error Signals Underlying Model-Based and Model-Free Reinforcement Learning. Neuron, 2010, 66, 585-595.	8.1	935
2	Oxytocin Attenuates Amygdala Responses to Emotional Faces Regardless of Valence. Biological Psychiatry, 2007, 62, 1187-1190.	1.3	690
3	Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neuroscience, 2005, 8, 147-148.	14.8	680
4	Dissociable Systems for Gain- and Loss-Related Value Predictions and Errors of Prediction in the Human Brain. Journal of Neuroscience, 2006, 26, 9530-9537.	3.6	501
5	Processing of the Arousal of Subliminal and Supraliminal Emotional Stimuli by the Human Amygdala. Journal of Neuroscience, 2003, 23, 10274-10282.	3.6	406
6	Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14681-14686.	7.1	391
7	Determining a Role for Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making. Cerebral Cortex, 2009, 19, 483-495.	2.9	330
8	Personal space regulation by the human amygdala. Nature Neuroscience, 2009, 12, 1226-1227.	14.8	324
9	Visualization of Group Inference Data in Functional Neuroimaging. Neuroinformatics, 2009, 7, 73-82.	2.8	291
10	Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4705-4709.	7.1	280
11	Gene gene interaction associated with neural reward sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8125-8130.	7.1	221
12	Lesion Mapping of Cognitive Abilities Linked to Intelligence. Neuron, 2009, 61, 681-691.	8.1	219
13	Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. NeuroImage, 2004, 23, 224-232.	4.2	152
14	fMRI Reveals How Pain Modulates Visual Object Processing in the Ventral Visual Stream. Neuron, 2007, 55, 157-167.	8.1	117
15	Somatotopic Representation of Nociceptive Information in the Putamen: An Event-related fMRI Study. Cerebral Cortex, 2004, 14, 1340-1345.	2.9	112
16	Dissociable contributions within the medial temporal lobe to encoding of object-location associations. Learning and Memory, 2005, 12, 343-351.	1.3	91
17	Neural correlates of memory confidence. NeuroImage, 2006, 33, 1188-1193.	4.2	91
18	Modelâ€based approaches to neuroimaging: combining reinforcement learning theory with fMRI data. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 501-510.	2.8	82

Jan P GlÃ**s**cher

#	Article	IF	CITATIONS
19	Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices. Social Cognitive and Affective Neuroscience, 2020, 15, 695-707.	3.0	75
20	Subregions of the ventral striatum show preferential coding of reward magnitude and probability. NeuroImage, 2007, 38, 557-563.	4.2	68
21	A brain network supporting social influences in human decision-making. Science Advances, 2020, 6, eabb4159.	10.3	66
22	Formal Learning Theory Dissociates Brain Regions with Different Temporal Integration. Neuron, 2005, 47, 295-306.	8.1	54
23	Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer. Psychopharmacology, 2015, 232, 437-451.	3.1	54
24	Model-based lesion mapping of cognitive control using the Wisconsin Card Sorting Test. Nature Communications, 2019, 10, 20.	12.8	52
25	Neuroanatomical Correlates of Executive Functions: A Neuropsychological Approach Using the EXAMINER Battery. Journal of the International Neuropsychological Society, 2014, 20, 52-63.	1.8	49
26	Linear and inverted U-shaped dose-response functions describe estrogen effects on hippocampal activity in young women. Nature Communications, 2018, 9, 1220.	12.8	47
27	Elevated responses to constant facial emotions in different faces in the human amygdala: an fMRI study of facial identity and expression. BMC Neuroscience, 2004, 5, 45.	1.9	46
28	Investigation of mood-congruent false and true memory recognition in depression. Depression and Anxiety, 2005, 21, 9-17.	4.1	45
29	Emotional enhancement effect of memory: Removing the influence of cognitive factors. Learning and Memory, 2008, 15, 569-573.	1.3	39
30	Detecting fearful and neutral faces: BOLD latency differences in amygdala–hippocampal junction. NeuroImage, 2006, 33, 805-814.	4.2	32
31	Independent Effects of Emotion and Working Memory Load on Visual Activation in the Lateral Occipital Complex. Journal of Neuroscience, 2007, 27, 4366-4373.	3.6	31
32	Theory of mind and decision science: Towards a typology of tasks and computational models. Neuropsychologia, 2020, 146, 107488.	1.6	31
33	Structure–function relationships in the processing of regret in the orbitofrontal cortex. Brain Structure and Function, 2009, 213, 535-551.	2.3	28
34	Neural systems for choice and valuation with counterfactual learning signals. NeuroImage, 2014, 89, 57-69.	4.2	28
35	Neural Dynamics of Learning Sound—Action Associations. PLoS ONE, 2008, 3, e3845.	2.5	25
36	Causal role of the inferolateral prefrontal cortex in balancing goal-directed and habitual control of behavior. Scientific Reports, 2018, 8, 9382.	3.3	18

Jan P GlÃ**s**cher

#	Article	IF	CITATIONS
37	Congruence of Inherent and Acquired Values Facilitates Reward-Based Decision-Making. Journal of Neuroscience, 2016, 36, 5003-5012.	3.6	11
38	Stress reduces both model-based and model-free neural computations during flexible learning. NeuroImage, 2021, 229, 117747.	4.2	11
39	Semantic Incongruency Interferes With Endogenous Attention in Cross-Modal Integration of Semantically Congruent Objects. Frontiers in Integrative Neuroscience, 2019, 13, 53.	2.1	10
40	Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism. PLoS Computational Biology, 2015, 11, e1004558.	3.2	10
41	Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum. Journal of Neuroscience, 2016, 36, 12650-12660.	3.6	9
42	A Two-Way Street between Attention and Learning. Neuron, 2017, 93, 256-258.	8.1	9
43	Searching for the neural causes of criminal behavior. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 451-452.	7.1	9
44	Dose-dependent effects of estrogen on prediction error related neural activity in the nucleus accumbens of healthy young women. Psychopharmacology, 2020, 237, 745-755.	3.1	7
45	Altered behavioral and neural responsiveness to counterfactual gains in the elderly. Cognitive, Affective and Behavioral Neuroscience, 2016, 16, 457-472.	2.0	6
46	Context-specific behavioral surprise is differentially correlated with activity in anterior and posterior brain systems. NeuroReport, 2016, 27, 677-682.	1.2	3
47	Towards controllable image descriptions with semi-supervised VAE. Journal of Visual Communication and Image Representation, 2019, 63, 102574.	2.8	3
48	Sex Differences and Exogenous Estrogen Influence Learning and Brain Responses to Prediction Errors. Cerebral Cortex, 2022, 32, 2022-2036.	2.9	3
49	Humans depart from optimal computational models of interactive decision-making during competition under partial information. Scientific Reports, 2022, 12, 289.	3.3	3
50	Strategies for navigating a dynamic world. Science, 2020, 369, 1056-1057.	12.6	1
51	Zen and the Art of Making a Bayesian Espresso. Neuron, 2018, 98, 1066-1068.	8.1	0
52	The causal role of temporoparietal junction in computing social influence in human decision-making. , 2019, , .		0
53	Learning about Other Persons' Character Traits Relies on Combining Reinforcement Learning with Representations of Trait Similarities. , 2019, , .		0