List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2883779/publications.pdf Version: 2024-02-01

		186265	223800
105	2,688	28	46
papers	citations	h-index	g-index
112	112	112	2559
all docs	docs citations	times ranked	citing authors

LOZEE NOSEK

#	Article	IF	CITATIONS
1	Candida parapsilosis: from Genes to the Bedside. Clinical Microbiology Reviews, 2019, 32, .	13.6	182
2	The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis. PLoS Genetics, 2015, 11, e1005626.	3.5	139
3	Linear mitochondrial genomes: 30 years down the line. Trends in Genetics, 1998, 14, 184-188.	6.7	119
4	Identification and comparative analysis of telomerase RNAs from <i>Candida</i> species reveal conservation of functional elements. Rna, 2009, 15, 546-559.	3.5	91
5	Telomeric circles: universal players in telomere maintenance?. Nature Structural and Molecular Biology, 2009, 16, 1010-1015.	8.2	89
6	Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Current Genetics, 2003, 44, 73-84.	1.7	87
7	Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Molecular Genetics and Genomics, 1995, 247, 61-72.	2.4	72
8	NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. Journal of Bacteriology, 1994, 176, 5622-5630.	2.2	71
9	Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Research, 2011, 39, 4202-4219.	14.5	69
10	Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Research, 2000, 28, 4479-4487.	14.5	64
11	Amplification of Telomeric Arrays via Rolling-circle Mechanism. Journal of Biological Chemistry, 2005, 280, 10840-10845.	3.4	63
12	Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. Nucleic Acids Research, 2006, 34, 2472-2481.	14.5	62
13	Massive programmed translational jumping in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5926-5931.	7.1	58
14	Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis. Molecular Genetics and Genomics, 2004, 272, 173-180.	2.1	56
15	Gentisate and 3-oxoadipate pathways in the yeast Candida parapsilosis: identification and functional analysis of the genes coding for 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase. Microbiology (United Kingdom), 2011, 157, 2152-2163.	1.8	56
16	On the origin of telomeres: a glimpse at the pre-telomerase world. BioEssays, 2006, 28, 182-190.	2.5	54
17	Biology and genetics of the pathogenic yeast Candida parapsilosis. Current Genetics, 2009, 55, 497-509.	1.7	53
18	Linear versus circular mitochondrial genomes: intraspecies variability of mitochondrial genome architecture in Candida parapsilosis. Microbiology (United Kingdom), 2004, 150, 1571-1580.	1.8	52

#	Article	IF	CITATIONS
19	Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Letters, 2004, 567, 142-146.	2.8	50
20	Taz1 Binding to a Fission Yeast Model Telomere. Journal of Biological Chemistry, 2004, 279, 50764-50772.	3.4	45
21	Identification of a Putative Mitochondrial Telomere-binding Protein of the Yeast Candida parapsilosis. Journal of Biological Chemistry, 1997, 272, 3049-3056.	3.4	42
22	Mitochondrial Telomeres as Molecular Markers for Identification of the Opportunistic Yeast Pathogen Candida parapsilosis. Journal of Clinical Microbiology, 2002, 40, 1283-1289.	3.9	38
23	The mitochondrial genome of the pathogenic yeast Candida subhashii: GC-rich linear DNA with a protein covalently attached to the 5′ termini. Microbiology (United Kingdom), 2010, 156, 2153-2163.	1.8	36
24	t-Loops in yeast mitochondria. Mitochondrion, 2002, 1, 455-459.	3.4	35
25	Mitochondrial Telomere-binding Protein from Candida parapsilosis Suggests an Evolutionary Adaptation of a Nonspecific Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 1999, 274, 8850-8857.	3.4	33
26	Electron microscopic analysis supports a dual role for the mitochondrial telomere-binding protein of Candida parapsilosis. Journal of Molecular Biology, 2001, 305, 61-69.	4.2	30
27	Genetic manipulation of the pathogenic yeast Candida parapsilosis. Current Genetics, 2002, 42, 27-35.	1.7	30
28	Novel subfamily of mitochondrial HMG box-containing proteins: functional analysis of Gcf1p from Candida albicans. Microbiology (United Kingdom), 2009, 155, 1226-1240.	1.8	29
29	A New View of the T-Loop Junction: Implications for Self-Primed Telomere Extension, Expansion of Disease-Related Nucleotide Repeat Blocks, and Telomere Evolution. Frontiers in Genetics, 2019, 10, 792.	2.3	29
30	Mitochondrial chromosome structure: an insight from analysis of complete yeast genomes. FEMS Yeast Research, 2006, 6, 356-370.	2.3	28
31	Mitochondrial nucleoids from the yeast Candida parapsilosis: expansion of the repertoire of proteins associated with mitochondrial DNA. Microbiology (United Kingdom), 2009, 155, 1558-1568.	1.8	28
32	Tay1 Protein, a Novel Telomere Binding Factor from Yarrowia lipolytica. Journal of Biological Chemistry, 2010, 285, 38078-38092.	3.4	27
33	Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins. Scientific Reports, 2019, 9, 13365.	3.3	27
34	Step-by-Step Evolution of Telomeres: Lessons from Yeasts. Genome Biology and Evolution, 2021, 13, .	2.5	27
35	A SARS-CoV-2 mutant from B.1.258 lineage with â^†H69/â^†V70 deletion in the Spike protein circulating in Central Europe in the fall 2020. Virus Genes, 2021, 57, 556-560.	1.6	27
36	Replication Intermediates of the Linear Mitochondrial DNA of Candida parapsilosis Suggest a Common Recombination Based Mechanism for Yeast Mitochondria. Journal of Biological Chemistry, 2014, 289, 22659-22670.	3.4	26

#	Article	IF	CITATIONS
37	Surveillance of SARS-CoV-2 lineage B.1.1.7 in Slovakia using a novel, multiplexed RT-qPCR assay. Scientific Reports, 2021, 11, 20494.	3.3	24
38	Linear DNA plasmid pPK2 ofPichia kluyveri: distinction between cytoplasmic and mitochondrial linear plasmids in yeasts. Yeast, 1999, 15, 781-791.	1.7	23
39	Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis. Gene, 2007, 396, 338-345.	2.2	23
40	High-efficiency transformation of the pathogenic yeast Candida parapsilosis. Current Genetics, 2004, 45, 183-186.	1.7	20
41	Mitochondrial genome variability within the Candida parapsilosis species complex. Mitochondrion, 2012, 12, 514-519.	3.4	20
42	Metabolic gene clusters encoding the enzymes of two branches of the 3-oxoadipate pathway in the pathogenic yeast Candida albicans. FEMS Yeast Research, 2015, 15, .	2.3	20
43	Comparison of element levels in minimal and complex yeast media. Canadian Journal of Microbiology, 2007, 53, 533-535.	1.7	19
44	Programmed translational bypassing elements in mitochondria: structure, mobility, and evolutionary origin. Trends in Genetics, 2015, 31, 187-194.	6.7	19
45	Synergism of the Two Myb Domains of Tay1 Protein Results in High Affinity Binding to Telomeres. Journal of Biological Chemistry, 2012, 287, 32206-32215.	3.4	18
46	Mitochondrial genome of the basidiomycetous yeast Jaminaea angkorensis. Current Genetics, 2014, 60, 49-59.	1.7	17
47	Double-stranded telomeric DNA binding proteins: Diversity matters. Cell Cycle, 2017, 16, 1568-1577.	2.6	17
48	Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2020, 295, 8958-8971.	3.4	17
49	Yeast sequencing reports. Genes of the linear mitochondrial DNA ofWilliopsis mrakii: Coding sequences for a maturase-like protein, a ribosomal protein VAR1 homologue, cytochrome oxidase subunit 2 and methionyl tRNA. Yeast, 1994, 10, 391-398.	1.7	16
50	Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins. PLoS ONE, 2016, 11, e0154225.	2.5	16
51	Nanopore sequencing of SARS-CoV-2: Comparison of short and long PCR-tiling amplicon protocols. PLoS ONE, 2021, 16, e0259277.	2.5	16
52	Preparation of yeast mitochondrial DNA for direct sequence analysis. Current Genetics, 2008, 54, 105-109.	1.7	15
53	A single amino acid mutation alters the capsid protein electrophoretic double-band phenotype of the Plum pox virus strain PPV-Rec. Archives of Virology, 2010, 155, 1151-1155.	2.1	15
54	The Strictly Aerobic Yeast Yarrowia lipolytica Tolerates Loss of a Mitochondrial DNA-Packaging Protein. Eukaryotic Cell, 2014, 13, 1143-1157.	3.4	15

#	Article	IF	CITATIONS
55	Genome sequence of the opportunistic human pathogen Magnusiomyces capitatus. Current Genetics, 2019, 65, 539-560.	1.7	14
56	Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules, 2020, 10, 1193.	4.0	14
57	Genome analysis of <i>Candida subhashii</i> reveals its hybrid nature and dual mitochondrial genome conformations. DNA Research, 2021, 28, .	3.4	14
58	Monoclonal antibodies targeting two immunodominant epitopes on the Spike protein neutralize emerging SARS-CoV-2 variants of concern. EBioMedicine, 2022, 76, 103818.	6.1	14
59	Isolation and expression of the gene encoding mitochondrial ADP/ATP carrier (AAC) from the pathogenic yeastCandida parapsilosis. Yeast, 1999, 15, 1237-1242.	1.7	12
60	Mitochondrial Single-Stranded DNA-Binding Proteins: in Search for New Functions. Biological Chemistry, 2001, 382, 179-86.	2.5	11
61	Lack of the catalytic subunit of telomerase leads to growth defects accompanied by structural changes at the chromosomal ends in Yarrowia lipolytica. Current Genetics, 2010, 56, 413-425.	1.7	11
62	Differentiation of the Yeasts Williopsis, Zygowilliopsis and Komagataea by Karyotypic and PCR Analyses. Systematic and Applied Microbiology, 2004, 27, 192-197.	2.8	10
63	Disruption of genes encoding pyruvate dehydrogenase kinases leads to retarded growth on acetate and ethanol in <i>Saccharomyces cerevisiae</i> . Yeast, 2008, 25, 9-19.	1.7	10
64	Telomere heterogeneity: Taking advantage of stochastic events. FEBS Letters, 2009, 583, 1067-1071.	2.8	10
65	Shared evolutionary footprints suggest mitochondrial oxidative damage underlies multiple complex I losses in fungi. Open Biology, 2021, 11, 200362.	3.6	10
66	An Overlooked Riddle of Life's Origins: Energy-Dependent Nucleic Acid Unzipping. Journal of Molecular Evolution, 2003, 57, S182-S189.	1.8	9
67	Saccharomyces cerevisiae as a model for the study of extranuclear functions of mammalian telomerase. Current Genetics, 2015, 61, 517-527.	1.7	9
68	Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids. Bioscience Reports, 2016, 36, e00288.	2.4	9
69	Electrophoretic karyotype of Dipodascus (Endomyces) magnusii: two main intraspecific chromosomal polymorphisms associated with the difference in total genome size. Current Genetics, 1995, 29, 81-87.	1.7	8
70	Eukaryotic transporters for hydroxyderivatives of benzoic acid. Scientific Reports, 2017, 7, 8998.	3.3	8
71	Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion, 2021, 57, 148-162.	3.4	8
72	The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 2021, 297, 101155.	3.4	8

#	Article	IF	CITATIONS
73	The chromosome end replication: lessons from mitochondrial genetics. Journal of Applied Biomedicine, 2004, 2, 71-79.	1.7	8
74	Mitochondrial DNA of Endomyces (Dipodascus) magnusii. Current Genetics, 1993, 23, 549-552.	1.7	7
75	Isolation of a dsRNA virus from Dipodascus (Endomyces) magnusii. Current Genetics, 1993, 23, 219-222.	1.7	7
76	Mgm101: A double-duty Rad52-like protein. Cell Cycle, 2016, 15, 3169-3176.	2.6	7
77	Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis. G3: Genes, Genomes, Genetics, 2016, 6, 4047-4058.	1.8	7
78	The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome. Nucleic Acids Research, 2016, 44, 2227-2239.	14.5	7
79	Ten simple rules for writing a cover letter to accompany a job application for an academic position. PLoS Computational Biology, 2018, 14, e1006132.	3.2	7
80	Design and Synthesis of Pyrano[3,2-b]indolones Showing Antimycobacterial Activity. ACS Infectious Diseases, 2021, 7, 88-100.	3.8	7
81	Several Polymers Enhance the Sensitivity of the Southwestern Assay. Analytical Biochemistry, 1995, 227, 387-389.	2.4	6
82	Development of a transformation system for the multinuclear yeastDipodascus (Endomyces) magnusii. , 1998, 14, 805-812.		6
83	Yeast membranes and cell wall: from basics to applications. Current Genetics, 2013, 59, 167-169.	1.7	6
84	Identification of Yeast Mutants Exhibiting Altered Sensitivity to Valinomycin and Nigericin Demonstrate Pleiotropic Effects of Ionophores on Cellular Processes. PLoS ONE, 2016, 11, e0164175.	2.5	6
85	Commentary: Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Frontiers in Genetics, 2018, 9, 742.	2.3	5
86	Mitochondrial transfer RNA genes of the yeast Candida parapsilosis. Gene, 1994, 142, 307-308.	2.2	4
87	The respiratory complex I in yeast: Isolation of a geneNUO51 coding for the nucleotide-binding subunit of NADH: Ubiquinone oxidoreductase from the obligately aerobic yeastYarrowia lipolytica. Folia Microbiologica, 2000, 45, 429-433.	2.3	4
88	Genome analysis of five recently described species of the CUG-Ser clade uncovers <i>Candida theae</i> as a new hybrid lineage with pathogenic potential in the <i>Candida parapsilosis</i> species complex. DNA Research, 2022, , .	3.4	4
89	Isolation of genes coding for Ade2 and Ura3 homologues from the multinuclear yeast Dipodascus magnusii. Current Genetics, 2002, 41, 20-24.	1.7	3
90	Mathematical model of alternative mechanism of telomere length maintenance. Physical Review E, 2014, 89, 032701.	2.1	3

#	Article	IF	CITATIONS
91	A new tool for an old problem. Cell Cycle, 2012, 11, 1755-1755.	2.6	2
92	Draft Genome Sequence of an Obligate Psychrophilic Yeast, Candida psychrophila NRRL Y-17665 T. Genome Announcements, 2017, 5, .	0.8	2
93	OCT1 – a yeast mitochondrial thiolase involved in the 3-oxoadipate pathway. FEMS Yeast Research, 2021, 21, .	2.3	2
94	Filling out the gaps is the hardest (yet rewarding) task: The genome-wide collection of the fission yeast deletion mutants is near completion. Cell Cycle, 2010, 9, 2271-2274.	2.6	1
95	Formation of C-terminally truncated version of the Taz1 protein employs cleavage-box structure in mRNA. Biochemical and Biophysical Research Communications, 2010, 392, 391-396.	2.1	1
96	Timing of meiosis: Microtubules on the move. Cell Cycle, 2014, 13, 13-13.	2.6	1
97	Mdm31 protein mediates sensitivity to potassium ionophores but does not regulate mitochondrial morphology or phospholipid trafficking inSchizosaccharomyces pombe. Yeast, 2015, 32, 345-354.	1.7	1
98	Genome Sequence of Flavor-Producing Yeast Saprochaete suaveolens NRRL Y-17571. Microbiology Resource Announcements, 2019, 8, .	0.6	1
99	Genome Sequence of an Arthroconidial Yeast, Saprochaete fungicola CBS 625.85. Microbiology Resource Announcements, 2019, 8, .	0.6	1
100	Genome Sequence of the Yeast <i>Saprochaete ingens</i> CBS 517.90. Microbiology Resource Announcements, 2019, 8, .	0.6	1
101	Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. Journal of Molecular Evolution, 2020, 88, 293-318.	1.8	1
102	Linear DNA plasmid pPK2 of Pichia kluyveri: distinction between cytoplasmic and mitochondrial linear plasmids in yeasts. Yeast, 1999, 15, 781-791.	1.7	1
103	Transcriptome and proteome profiling reveals complex adaptations of Candida parapsilosis cells assimilating hydroxyaromatic carbon sources. PLoS Genetics, 2022, 18, e1009815.	3.5	1
104	Yeast telomeres: how to ignore essential double-strand DNA breaks?. Journal of Applied Biomedicine, 2003, 1, 189-198.	1.7	0
105	Mitochondrial chromosome structure: an insight from analysis of complete yeast genomes. FEMS Yeast Research, 2006, .	2.3	0