James Briscoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2883771/publications.pdf

Version: 2024-02-01

		11651	11052
170	21,226	70	137
papers	citations	h-index	g-index
195	195	195	18453
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nature Biotechnology, 2022, 40, 74-85.	17.5	152
2	Statistically derived geometrical landscapes capture principles of decision-making dynamics during cell fate transitions. Cell Systems, 2022, 13, 12-28.e3.	6.2	66
3	Another year of Developments. Development (Cambridge), 2022, 149, .	2.5	0
4	Thomas Michael Jessell. 2 August 1951â€"28 April 2019. Biographical Memoirs of Fellows of the Royal Society, 2022, 72, 197-219.	0.1	1
5	Preprints in Development. Development (Cambridge), 2022, 149, .	2.5	0
6	Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nature Cell Biology, 2022, 24, 633-644.	10.3	35
7	Dynamical landscapes of cell fate decisions. Interface Focus, 2022, 12, .	3.0	17
8	In preprints: morphogens in motion. Development (Cambridge), 2022, 149, .	2.5	2
9	TRF2-independent chromosome end protection during pluripotency. Nature, 2021, 589, 103-109.	27.8	41
10	Zooming into 2021. Development (Cambridge), 2021, 148, .	2.5	0
11	Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks. Development (Cambridge), 2021, 148, .	2.5	39
12	Cross-species comparisons and <i>in vitro </i> models to study tempo in development and homeostasis. Interface Focus, 2021, 11, 20200069.	3.0	19
13	Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak. PLoS Biology, 2021, 19, e3001200.	5.6	45
14	Single-cell transcriptome profiling of the human developing spinal cord reveals a conserved genetic programme with human-specific features. Development (Cambridge), 2021, 148, .	2.5	66
15	How Development supports early career researchers. Development (Cambridge), 2021, 148, .	2.5	1
16	Imaging development, stem cells and regeneration. Development (Cambridge), 2021, 148, .	2.5	0
17	A shared transcriptional code orchestrates temporal patterning of the central nervous system. PLoS Biology, 2021, 19, e3001450.	5.6	42
18	Looking at neurodevelopment through a big data lens. Science, 2020, 369, .	12.6	28

#	Article	IF	Citations
19	Species-specific pace of development is associated with differences in protein stability. Science, 2020, 369, .	12.6	163
20	Inclusion and diversity in developmental biology: introducing the Node Network. Development (Cambridge), 2020, 147, .	2.5	6
21	An ode to the Node: 10 years in the life of a community blog. Development (Cambridge), 2020, 147, .	2.5	0
22	Repressive interactions in gene regulatory networks: When you have no other choice. Current Topics in Developmental Biology, 2020, 139, 239-266.	2.2	25
23	Tractable nonlinear memory functions as a tool to capture and explain dynamical behaviors. Physical Review Research, 2020, 2, .	3.6	9
24	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biology, 2020, 18, e3000902.	5.6	21
25	The PAX-FOXO1s trigger fast trans-differentiation of chick embryonic neural cells into alveolar rhabdomyosarcoma with tissue invasive properties limited by S phase entry inhibition. PLoS Genetics, 2020, 16, e1009164.	3.5	8
26	Developing new associations. Development (Cambridge), 2020, 147, .	2.5	0
27	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit., 2020, 18, e3000902.		0
28	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit., 2020, 18, e3000902.		0
29	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit., 2020, 18, e3000902.		0
30	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit., 2020, 18, e3000902.		0
31	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit., 2020, 18, e3000902.		0
32	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit., 2020, 18, e3000902.		0
33	Title is missing!. , 2020, 16, e1009164.		0
34	Title is missing!. , 2020, 16, e1009164.		0
35	Title is missing!. , 2020, 16, e1009164.		0
36	Title is missing!. , 2020, 16, e1009164.		0

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 16, e1009164.		O
38	Title is missing!. , 2020, 16, e1009164.		0
39	New Year PlanS. Development (Cambridge), 2019, 146, .	2.5	0
40	A focus on scope. Development (Cambridge), 2019, 146, .	2.5	0
41	Gene expression dysregulation domains are not a specific feature of Down syndrome. Nature Communications, 2019, 10, 2489.	12.8	19
42	Thomas M. Jessell (1951-2019). Development (Cambridge), 2019, 146, .	2.5	1
43	Understanding Pattern Formation in Embryos: Experiment, Theory, and Simulation. Journal of Computational Biology, 2019, 26, 696-702.	1.6	20
44	Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord. Development (Cambridge), 2019, 146, .	2.5	245
45	Let there be preLights: one year on. Development (Cambridge), 2019, 146, .	2.5	0
46	A call for a better understanding of causation in cell biology. Nature Reviews Molecular Cell Biology, 2019, 20, 261-262.	37.0	41
47	Establishing neuronal diversity in the spinal cord: a time and a place. Development (Cambridge), 2019, 146, .	2.5	208
48	Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development (Cambridge), 2019, 146, .	2.5	19
49	c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells. Nature Immunology, 2018, 19, 497-507.	14.5	118
50	G protein–coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog. Science Signaling, 2018, 11, .	3.6	78
51	CRISPR Screens Uncover Genes that Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog. Developmental Cell, 2018, 44, 113-129.e8.	7.0	95
52	Smoothened Sensor Places Sodium and Sterols Center Stage. Developmental Cell, 2018, 44, 3-4.	7.0	10
53	Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors. Cell Systems, 2018, 6, 521-530.e3.	6.2	96
54	Sonic hedgehog in vertebrate neural tube development. International Journal of Developmental Biology, 2018, 62, 225-234.	0.6	44

#	Article	IF	CITATIONS
55	Please allow me to introduce myself. Development (Cambridge), 2018, 145, .	2.5	О
56	Nervous System Regionalization Entails Axial Allocation before Neural Differentiation. Cell, 2018, 175, 1105-1118.e17.	28.9	128
57	What does time mean in development?. Development (Cambridge), 2018, 145, .	2.5	102
58	Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics. PLoS Biology, 2018, 16, e2003127.	5.6	77
59	Memory functions reveal structural properties of gene regulatory networks. PLoS Computational Biology, 2018, 14, e1006003.	3.2	23
60	Human axial progenitors generate trunk neural crest cells in vitro. ELife, 2018, 7, .	6.0	81
61	The physics of development 100 years after D'Arcy Thompson's "On Growth and Form― Mechanisms of Development, 2017, 145, 26-31.	1.7	13
62	A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development. Developmental Cell, 2017, 41, 243-261.e7.	7.0	210
63	Morphogen interpretation: concentration, time, competence, and signaling dynamics. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e271.	5.9	117
64	Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science, 2017, 356, 1379-1383.	12.6	144
65	Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches. PLoS Computational Biology, 2016, 12, e1005154.	3.2	60
66	Development-on-chip: <i>in vitro</i> neural tube patterning with a microfluidic device. Development (Cambridge), 2016, 143, 1884-1892.	2.5	116
67	Mathematical models help explain experimental data. Response to â€Transcriptional interpretation of Shh morphogen signaling: computational modeling validates empirically established models'. Development (Cambridge), 2016, 143, 1640-1643.	2.5	0
68	Scaling Pattern to Variations in Size during Development of the Vertebrate Neural Tube. Developmental Cell, 2016, 37, 127-135.	7.0	41
69	Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs. Developmental Cell, 2016, 36, 639-653.	7.0	87
70	Reduced cholesterol levels impair Smoothened activation in Smith–Lemli–Opitz syndrome. Human Molecular Genetics, 2016, 25, 693-705.	2.9	82
71	Morphogen rules: design principles of gradient-mediated embryo patterning. Development (Cambridge), 2015, 142, 3996-4009.	2.5	402
72	Morphogens, modeling and patterning the neural tube: an interview with James Briscoe. BMC Biology, 2015, 13, 5.	3.8	4

#	Article	IF	Citations
73	Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nature Communications, 2015, 6, 6709.	12.8	123
74	Notch Activity Modulates the Responsiveness of Neural Progenitors to Sonic Hedgehog Signaling. Developmental Cell, 2015, 33, 373-387.	7.0	117
75	The route to spinal cord cell types: a tale of signals and switches. Trends in Genetics, 2015, 31, 282-289.	6.7	104
76	Developmental Pattern Formation in Phases. Trends in Cell Biology, 2015, 25, 579-591.	7.9	54
77	Valproic Acid silencing of <i>ascl1b/ascl1</i> results in the failure of serotonergic differentiation in a zebrafish model of Fetal Valproate Syndrome. DMM Disease Models and Mechanisms, 2014, 7, 107-17.	2.4	37
78	Integration of Signals along Orthogonal Axes of the Vertebrate Neural Tube Controls Progenitor Competence and Increases Cell Diversity. PLoS Biology, 2014, 12, e1001907.	5.6	88
79	In Vitro Generation of Neuromesodermal Progenitors Reveals Distinct Roles for Wnt Signalling in the Specification of Spinal Cord and Paraxial Mesoderm Identity. PLoS Biology, 2014, 12, e1001937.	5.6	311
80	A theoretical framework for the regulation of Shh morphogen-controlled gene expression. Development (Cambridge), 2014, 141, 3868-3878.	2.5	70
81	ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis. Development (Cambridge), 2014, 141, 3966-3977.	2.5	40
82	Coordination of progenitor specification and growth in mouse and chick spinal cord. Science, 2014, 345, 1254927.	12.6	159
83	Hedgehog threads to spread. Nature Cell Biology, 2013, 15, 1265-1267.	10.3	8
84	Retinoid Acid Specifies Neuronal Identity through Graded Expression of Ascl1. Current Biology, 2013, 23, 412-418.	3.9	24
85	Temporal control of BMP signalling determines neuronal subtype identity in the dorsal neural tube. Development (Cambridge), 2013, 140, 1467-1474.	2.5	61
86	An inducible transgene expression system for zebrafish and chick. Development (Cambridge), 2013, 140, 2235-2243.	2.5	49
87	Morphogen interpretation: the transcriptional logic of neural tube patterning. Current Opinion in Genetics and Development, 2013, 23, 423-428.	3.3	84
88	The mechanisms of Hedgehog signalling and its roles in development and disease. Nature Reviews Molecular Cell Biology, 2013, 14, 416-429.	37.0	1,473
89	Distinct Regulatory Mechanisms Act to Establish and Maintain Pax3 Expression in the Developing Neural Tube. PLoS Genetics, 2013, 9, e1003811.	3.5	27
90	A gene regulatory motif that generates oscillatory or multiway switch outputs. Journal of the Royal Society Interface, 2013, 10, 20120826.	3.4	61

#	Article	IF	Citations
91	The transition from differentiation to growth during dermomyotome-derived myogenesis depends on temporally restricted hedgehog signaling. Development (Cambridge), 2013, 140, 1740-1750.	2.5	29
92	Phosphorylation of <i>Sox9</i> is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2882-2887.	7.1	76
93	Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death and Differentiation, 2012, 19, 209-219.	11.2	37
94	Canonical BMP7 activity is required for the generation of discrete neuronal populations in the dorsal spinal cord. Development (Cambridge), 2012, 139, 259-268.	2.5	76
95	Oncogenicity of the Developmental Transcription Factor Sox9. Cancer Research, 2012, 72, 1301-1315.	0.9	180
96	Developmental Pattern Formation: Insights from Physics and Biology. Science, 2012, 338, 210-212.	12.6	105
97	Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube. Cell, 2012, 148, 273-284.	28.9	417
98	Genetics of system biology. Current Opinion in Genetics and Development, 2012, 22, 523-526.	3.3	0
99	Primary cilia and graded Sonic Hedgehog signaling. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 753-772.	5.9	79
100	Epithelial organisation revealed by a network of cellular contacts. Nature Communications, 2011, 2, 526.	12.8	48
101	Anterior <i>Hox</i> Genes Interact with Components of the Neural Crest Specification Network to Induce Neural Crest Fates. Stem Cells, 2011, 29, 858-870.	3.2	29
102	An intuitive graphical visualization technique for the interrogation of transcriptome data. Nucleic Acids Research, 2011, 39, 7380-7389.	14.5	41
103	Sonic Hedgehog Dependent Phosphorylation by CK1 $\hat{l}\pm$ and GRK2 Is Required for Ciliary Accumulation and Activation of Smoothened. PLoS Biology, 2011, 9, e1001083.	5.6	176
104	Generation of mice with functional inactivation of <i>talpid3 </i> , a gene first identified in chicken. Development (Cambridge), 2011, 138, 3261-3272.	2.5	66
105	SOX9 induces and maintains neural stem cells. Nature Neuroscience, 2010, 13, 1181-1189.	14.8	287
106	Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development (Cambridge), 2010, 137, 4271-4282.	2.5	86
107	Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes and Development, 2010, 24, 1186-1200.	5.9	180
108	Limbs Made to Measure. PLoS Biology, 2010, 8, e1000421.	5.6	1

#	Article	IF	Citations
109	Dynamic Assignment and Maintenance of Positional Identity in the Ventral Neural Tube by the Morphogen Sonic Hedgehog. PLoS Biology, 2010, 8, e1000382.	5.6	184
110	[P1.23]: Repression of the proneural factor Ascl1 by retinoid signalling restricts neuronal fate choices in the ventral spinal cord. International Journal of Developmental Neuroscience, 2010, 28, 662-663.	1.6	0
111	[P2.79]: Dynamic patterning of the vertebrate neural tube. International Journal of Developmental Neuroscience, 2010, 28, 714-714.	1.6	0
112	Applying an Adaptive Watershed to the Tissue Cell Quantification During T-Cell Migration and Embryonic Development. Methods in Molecular Biology, 2010, 616, 207-228.	0.9	6
113	SUMOylation by Pias1 Regulates the Activity of the Hedgehog Dependent Gli Transcription Factors. PLoS ONE, 2010, 5, e11996.	2.5	45
114	Floor Plate Patterning of Ventral Cell Types: Ventral Patterning., 2009,, 233-242.		0
115	The Kinesin Protein Kif7 Is a Critical Regulator of Gli Transcription Factors in Mammalian Hedgehog Signaling. Science Signaling, 2009, 2, ra29.	3.6	188
116	Establishing and Interpreting Graded Sonic Hedgehog Signaling during Vertebrate Neural Tube Patterning: The Role of Negative Feedback. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002014-a002014.	5.5	194
117	Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development (Cambridge), 2009, 136, 2477-2485.	2.5	50
118	Mouse mutagenesis identifies novel roles for left–right patterning genes in pulmonary, craniofacial, ocular, and limb development. Developmental Dynamics, 2009, 238, 581-594.	1.8	35
119	Making a grade: Sonic Hedgehog signalling and the control of neural cell fate. EMBO Journal, 2009, 28, 457-465.	7.8	63
120	A mutation in Ihh that causes digit abnormalities alters its signalling capacity and range. Nature, 2009, 458, 1196-1200.	27.8	89
121	Temporal dynamics of patterning by morphogen gradients. Current Opinion in Genetics and Development, 2009, 19, 315-322.	3.3	61
122	Foxal and Foxa2 function both upstream of and cooperatively with Lmxla and Lmxlb in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Developmental Biology, 2009, 333, 386-396.	2.0	139
123	Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development (Cambridge), 2008, 135, 2489-2503.	2.5	640
124	A fluorescent reporter of caspase activity for live imaging. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13901-13905.	7.1	154
125	Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung's disease in Bardet–Biedl syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6714-6719.	7.1	178
126	Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 57-70.	4.0	132

#	Article	IF	Citations
127	Morphogens and the Control of Cell Proliferation and Patterning in the Spinal Cord. Cell Cycle, 2007, 6, 2640-2649.	2.6	189
128	The Transcriptional Repressor Glis2 Is a Novel Binding Partner for p120 Catenin. Molecular Biology of the Cell, 2007, 18, 1918-1927.	2.1	53
129	Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis. Nature Neuroscience, 2007, 10, 1433-1439.	14.8	85
130	Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature, 2007, 450, 717-720.	27.8	539
131	Inhibitory Gli3 Activity Negatively Regulates Wnt/β-Catenin Signaling. Current Biology, 2007, 17, 545-550.	3.9	100
132	An Amphioxus Gli Gene Reveals Conservation of Midline Patterning and the Evolution of Hedgehog Signalling Diversity in Chordates. PLoS ONE, 2007, 2, e864.	2.5	34
133	Agonizing Hedgehog. Nature Chemical Biology, 2006, 2, 10-11.	8.0	19
134	The interpretation of morphogen gradients. Development (Cambridge), 2006, 133, 385-394.	2.5	422
135	The chicken <i>talpid³</i> gene encodesa novel protein essentialfor Hedgehog signaling. Genes and Development, 2006, 20, 1365-1377.	5.9	112
136	The Sonic hedgehog pathway independently controls the patterning, proliferation and survival of neuroepithelial cells by regulating Gli activity. Development (Cambridge), 2006, 133, 517-528.	2.5	164
137	The floor plate: multiple cells, multiple signals. Nature Reviews Neuroscience, 2005, 6, 230-240.	10.2	212
138	HomozygousFt embryos are affected in floor plate maintenance and ventral neural tube patterning. Developmental Dynamics, 2005, 233, 623-630.	1.8	16
139	A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes and Development, 2005, 19, 626-641.	5.9	247
140	The Transcriptional Control of Trunk Neural Crest Induction, Survival, and Delamination. Developmental Cell, 2005, 8, 179-192.	7.0	360
141	Otx2 Regulates Subtype Specification and Neurogenesis in the Midbrain. Journal of Neuroscience, 2005, 25, 4856-4867.	3.6	133
142	Establishing neuronal circuitry: Hox genes make the connection. Genes and Development, 2004, 18, 1643-1648.	5.9	38
143	Hedgehog Signaling: Measuring Ligand Concentrations with Receptor Ratios. Current Biology, 2004, 14, R889-R891.	3.9	4
144	The generation and diversification of spinal motor neurons: signals and responses. Mechanisms of Development, 2004, 121, 1103-1115.	1.7	56

#	Article	IF	CITATIONS
145	Gli proteins and the control of spinalâ€cord patterning. EMBO Reports, 2003, 4, 761-765.	4. 5	209
146	Neural crest development is regulated by the transcription factor Sox9. Development (Cambridge), 2003, 130, 5681-5693.	2.5	410
147	Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes and Development, 2002, 16, 2865-2878.	5.9	283
148	The Antiviral Response to Gamma Interferon. Journal of Virology, 2002, 76, 9060-9068.	3.4	28
149	A Hedgehog-Insensitive Form of Patched Provides Evidence for Direct Long-Range Morphogen Activity of Sonic Hedgehog in the Neural Tube. Molecular Cell, 2001, 7, 1279-1291.	9.7	341
150	Morphogens. Current Biology, 2001, 11, R851-R854.	3.9	34
151	Specification of neuronal fates in the ventral neural tube. Current Opinion in Neurobiology, 2001, 11, 43-49.	4.2	482
152	Ventral neural patterning by <i>Nkx</i> homeobox genes: <i>Nkx6.1</i> controls somatic motor neuron and ventral interneuron fates. Genes and Development, 2000, 14, 2134-2139.	5.9	232
153	A Homeodomain Protein Code Specifies Progenitor Cell Identity and Neuronal Fate in the Ventral Neural Tube. Cell, 2000, 101, 435-445.	28.9	1,065
154	Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development (Cambridge), 2000, 127, 4855-4866.	2.5	229
155	Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development (Cambridge), 2000, 127, 4855-66.	2.5	87
156	Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature, 1999, 398, 622-627.	27.8	687
157	The specification of neuronal identity by graded sonic hedgehog signalling. Seminars in Cell and Developmental Biology, 1999, 10, 353-362.	5.0	213
158	The transcription factor GATA3 is a downstream effector of <i>Hoxb1</i> specification in rhombomere 4. Development (Cambridge), 1999, 126, 5523-5531.	2.5	94
159	A JAK1/JAK2 Chimera Can Sustain Alpha and Gamma Interferon Responses. Molecular and Cellular Biology, 1997, 17, 695-706.	2.3	195
160	Pax6 Controls Progenitor Cell Identity and Neuronal Fate in Response to Graded Shh Signaling. Cell, 1997, 90, 169-180.	28.9	939
161	Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harbor Symposia on Quantitative Biology, 1997, 62, 451-66.	1.1	122
162	Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state EMBO Journal, 1996, 15, 799-809.	7.8	164

#	Article	IF	CITATION
163	JAKs and STATs branch out. Trends in Cell Biology, 1996, 6, 336-340.	7.9	76
164	Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state. EMBO Journal, 1996, 15, 799-809.	7.8	66
165	A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6 EMBO Journal, 1995, 14, 1421-1429.	7.8	376
166	A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO Journal, 1995, 14, 1421-9.	7.8	147
167	Signal Transduction: Just another signalling pathway. Current Biology, 1994, 4, 1033-1035.	3.9	54
168	The protein tyrosine kinase JAK1 complements defects in interferon- $\hat{l}\pm/\hat{l}^2$ and $-\hat{l}^3$ signal transduction. Nature, 1993, 366, 129-135.	27.8	785
169	Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways EMBO Journal, 1993, 12, 4221-4228.	7.8	381
170	Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways. EMBO Journal, 1993, 12, 4221-8.	7.8	165