
Valery A Petrenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/288370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phage-Displayed Mimotopes of SARS-CoV-2 Spike Protein Targeted to Authentic and Alternative Cellular Receptors. Viruses, 2022, 14, 384.	3.3	10
2	Understanding the interactions between bone mineral crystals and their binding peptides derived from filamentous phage. Materials Today Advances, 2022, 15, 100263.	5.2	3
3	Colorimetric Assay of Bacterial Pathogens Based on Co ₃ O ₄ Magnetic Nanozymes Conjugated with Specific Fusion Phage Proteins and Magnetophoretic Chromatography. ACS Applied Materials & Interfaces, 2020, 12, 9090-9097.	8.0	95
4	Specific phages-based electrochemical impedimetric immunosensors for label-free and ultrasensitive detection of dual prostate-specific antigens. Sensors and Actuators B: Chemical, 2019, 297, 126727.	7.8	35
5	Combinatorial Avidity Selection of Mosaic Landscape Phages Targeted at Breast Cancer Cells—An Alternative Mechanism of Directed Molecular Evolution. Viruses, 2019, 11, 785.	3.3	11
6	Evolution of a Landscape Phage Library in a Mouse Xenograft Model of Human Breast Cancer. Viruses, 2019, 11, 988.	3.3	12
7	Selected landscape phage probe as selective recognition interface for sensitive total prostate-specific antigen immunosensor. Biosensors and Bioelectronics, 2018, 106, 1-6.	10.1	34
8	Sensitive colorimetric immunoassay of <i>Vibrio parahaemolyticus</i> based on specific nonapeptide probe screening from a phage display library conjugated with MnO ₂ nanosheets with peroxidase-like activity. Nanoscale, 2018, 10, 2825-2833.	5.6	60
9	Phage-derived protein-mediated targeted chemotherapy of pancreatic cancer. Journal of Drug Targeting, 2018, 26, 505-515.	4.4	7
10	Landscape Phage: Evolution from Phage Display to Nanobiotechnology. Viruses, 2018, 10, 311.	3.3	40
11	An efficient strategy to synthesize a multifunctional ferroferric oxide core@dye/SiO ₂ @Au shell nanocomposite and its targeted tumor theranostics. Journal of Materials Chemistry B, 2017, 5, 8209-8218.	5.8	21
12	Autonomous self-navigating drug-delivery vehicles: from science fiction to reality. Therapeutic Delivery, 2017, 8, 1063-1075.	2.2	12
13	Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted â€~magic bullets' to self-navigated â€~magic missiles'. Expert Opinion on Drug Delivery, 2017, 14, 373-384.	5.0	22
14	Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus. Biosensors and Bioelectronics, 2016, 82, 195-203.	10.1	93
15	A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library. Scientific Reports, 2016, 6, 22199.	3.3	70
16	Promiscuous tumor targeting phage proteins. Protein Engineering, Design and Selection, 2016, 29, 93-103.	2.1	13
17	Selection of Lung Cancer-Specific Landscape Phage for Targeted Drug Delivery. Combinatorial Chemistry and High Throughput Screening, 2016, 19, 412-422.	1.1	9
18	Combinatorial synthesis and screening of cancer cell-specific nanomedicines targeted via phage fusion proteins. Frontiers in Microbiology, 2015, 6, 628.	3.5	18

#	Article	IF	CITATIONS
19	Humoral immune responses against gonadotropin releasing hormone elicited by immunization with phage-peptide constructs obtained via phage display. Journal of Biotechnology, 2015, 216, 20-28.	3.8	18
20	Paclitaxel-Loaded PEG-PE–Based Micellar Nanopreparations Targeted with Tumor-Specific Landscape Phage Fusion Protein Enhance Apoptosis and Efficiently Reduce Tumors. Molecular Cancer Therapeutics, 2014, 13, 2864-2875.	4.1	31
21	Enhanced tumor delivery and antitumor activity in vivo of liposomal doxorubicin modified with MCF-7-specific phage fusion protein. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 421-430.	3.3	50
22	Specific Probe Selection from Landscape Phage Display Library and Its Application in Enzyme-Linked Immunosorbent Assay of Free Prostate-Specific Antigen. Analytical Chemistry, 2014, 86, 2767-2774.	6.5	94
23	Phage proteinâ€ŧargeted cancer nanomedicines. FEBS Letters, 2014, 588, 341-349.	2.8	47
24	Specific ligands for classical swine fever virus screened from landscape phage display library. Antiviral Research, 2014, 109, 68-71.	4.1	27
25	Peptide Microarray with Ligands at High Density Based on Symmetrical Carrier Landscape Phage for Detection of Cellulase. Analytical Chemistry, 2014, 86, 5844-5850.	6.5	30
26	Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines. Protein Engineering, Design and Selection, 2014, 27, 235-243.	2.1	25
27	Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy. Scientific Reports, 2014, 4, 6808.	3.3	60
28	Affinity Comparison of p3 and p8 Peptide Displaying Bacteriophages Using Surface Plasmon Resonance. Analytical Chemistry, 2013, 85, 10075-10082.	6.5	30
29	Metastatic prostate cancer cell-specific phage-like particles as a targeted gene-delivery system. Journal of Nanobiotechnology, 2013, 11, 31.	9.1	10
30	Targeted Delivery of siRNA into Breast Cancer Cells via Phage Fusion Proteins. Molecular Pharmaceutics, 2013, 10, 551-559.	4.6	46
31	Synergetic Targeted Delivery of Sleepingâ€Beauty Transposon System to Mesenchymal Stem Cells Using LPD Nanoparticles Modified with a Phageâ€Displayed Targeting Peptide. Advanced Functional Materials, 2013, 23, 1172-1181.	14.9	72
32	Blocking Agent Optimization for Nonspecific Binding on Phage Based Magnetoelastic Biosensors. Journal of the Electrochemical Society, 2012, 159, B818-B823.	2.9	21
33	Landscape phages and their fusion proteins targeted to breast cancer cells. Protein Engineering, Design and Selection, 2012, 25, 271-283.	2.1	27
34	Phage display allows identification of zona pellucida-binding peptides with species-specific properties: Novel approach for development of contraceptive vaccines for wildlife. Journal of Biotechnology, 2012, 162, 311-318.	3.8	21
35	Specificity and Promiscuity in Human Glutaminase Interacting Protein Recognition: Insight from the Binding of the Internal and C-Terminal Motif. Biochemistry, 2012, 51, 6950-6960.	2.5	5
36	Phagemid Vectors for Phage Display: Properties, Characteristics and Construction. Journal of Molecular Biology, 2012, 417, 129-143.	4.2	125

#	Article	IF	CITATIONS
37	Infective and inactivated filamentous phage as carriers for immunogenic peptides. Journal of Virological Methods, 2012, 183, 63-68.	2.1	29
38	On the Mechanism of Targeting of Phage Fusion Protein-Modified Nanocarriers: Only the Binding Peptide Sequence Matters. Molecular Pharmaceutics, 2011, 8, 1720-1728.	4.6	14
39	Selection of PCB binding phages as potential biorecognition elements for food and environmental monitoring. Analytical Methods, 2011, 3, 1865.	2.7	6
40	<i>In vitro</i> optimization of liposomal nanocarriers prepared from breast tumor cell specific phage fusion protein. Journal of Drug Targeting, 2011, 19, 597-605.	4.4	24
41	Effects of surface functionalization on the surface phage coverage and the subsequent performance of phage-immobilized magnetoelastic biosensors. Biosensors and Bioelectronics, 2011, 26, 2361-2367.	10.1	43
42	Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 315-323.	3.3	85
43	Chapter 4. Phage-mediated Drug Delivery. RSC Nanoscience and Nanotechnology, 2011, , 55-82.	0.2	2
44	Optimization of Landscape Phage Fusion Protein-Modified Polymeric Peg-Pe Micelles for Improved Breast Cancer Cell Targeting. Journal of Nanomedicine & Nanotechnology, 2011, s4, 008.	1.1	10
45	A pulse system for spectrum analysis of magnetoelastic biosensors. Applied Physics Letters, 2010, 96, 163502.	3.3	13
46	Landscape phage fusion protein-mediated targeting of nanomedicines enhances their prostate tumor cell association and cytotoxic efficiency. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 538-546.	3.3	39
47	Design and characterization of a magnetoelastic sensor for the detection of biological agents. Journal Physics D: Applied Physics, 2010, 43, 015004.	2.8	40
48	Evolutionary Selection of New Breast Cancer Cell-Targeting Peptides and Phages with the Cell-Targeting Peptides Fully Displayed on the Major Coat and Their Effects on Actin Dynamics during Cell Internalization. Molecular Pharmaceutics, 2010, 7, 1629-1642.	4.6	58
49	Cytoplasmic Delivery of Liposomes into MCF-7 Breast Cancer Cells Mediated by Cell-Specific Phage Fusion Coat Protein. Molecular Pharmaceutics, 2010, 7, 1149-1158.	4.6	60
50	Paclitaxel-Loaded Polymeric Micelles Modified with MCF-7 Cell-Specific Phage Protein: Enhanced Binding to Target Cancer Cells and Increased Cytotoxicity. Molecular Pharmaceutics, 2010, 7, 1007-1014.	4.6	91
51	Enhanced binding and killing of target tumor cells by drug-loaded liposomes modified with tumor-specific phage fusion coat protein. Nanomedicine, 2010, 5, 563-574.	3.3	78
52	Phage coated magnetoelastic micro-biosensors for real-time detection of Bacillus anthracis sporesâ~†. Sensors and Actuators B: Chemical, 2009, 137, 501-506.	7.8	71
53	Liposomes targeted by fusion phage proteins. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 83-89.	3.3	47
54	Selective detection of Salmonella typhimurium in the presence of high concentrations of masking bacteria. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 234-239.	1.5	4

#	Article	IF	CITATIONS
55	Landscape phage as a molecular recognition interface for detection devices. Microelectronics Journal, 2008, 39, 202-207.	2.0	55
56	A wireless biosensor using microfabricated phage-interfaced magnetoelastic particles. Sensors and Actuators A: Physical, 2008, 144, 38-47.	4.1	70
57	Phage Display for Generating Peptide Reagents. Current Protocols in Protein Science, 2008, 51, Unit 18.9.	2.8	22
58	Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. Journal of Microbiological Methods, 2007, 71, 55-60.	1.6	113
59	Magnetostrictive Microcantilever as an Advanced Transducer for Biosensors. Sensors, 2007, 7, 2929-2941.	3.8	50
60	Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sensors and Actuators B: Chemical, 2007, 126, 544-550.	7.8	126
61	Detection of Bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sensors and Actuators B: Chemical, 2007, 127, 559-566.	7.8	72
62	Phage-Based Magnetoelastic Wireless Biosensors for Detecting Bacillus Anthracis Spores. IEEE Sensors Journal, 2007, 7, 470-477.	4.7	52
63	Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosensors and Bioelectronics, 2007, 22, 986-992.	10.1	176
64	Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella typhimurium. Biosensors and Bioelectronics, 2006, 21, 1434-1442.	10.1	153
65	Thermostability of landscape phage probes. Analytical and Bioanalytical Chemistry, 2005, 382, 1346-1350.	3.7	84
66	Landscape phage probes for Salmonella typhimurium. Journal of Microbiological Methods, 2005, 63, 55-72.	1.6	104
67	Phage matrix for isolation of glioma cell membrane proteins. BioTechniques, 2004, 37, 254-260.	1.8	10
68	Diagnostic Probes for Bacillus anthracis Spores Selected from a Landscape Phage Library. Clinical Chemistry, 2004, 50, 1899-1906.	3.2	84
69	Cell targeted phagemid rescued by preselected landscape phage. Gene, 2004, 341, 59-65.	2.2	38
70	Detection of biological threats. A challenge for directed molecular evolution. Journal of Microbiological Methods, 2004, 58, 147-168.	1.6	101
71	Phage display for detection of biological threat agents. Journal of Microbiological Methods, 2003, 53, 253-262.	1.6	236
72	Phage probes for malignant glial cells. Molecular Cancer Therapeutics, 2003, 2, 1129-37.	4.1	35

#	Article	IF	CITATIONS
73	Phage display selection of peptides that affect prostate carcinoma cells attachment and invasion. Prostate, 2001, 47, 239-251.	2.3	79
74	Identifying Diagnostic Peptides for Lyme Disease through Epitope Discovery. Vaccine Journal, 2001, 8, 150-160.	2.6	56
75	Phages from landscape libraries as substitute antibodies. Protein Engineering, Design and Selection, 2000, 13, 589-592.	2.1	118
76	Cross-linked filamentous phage as an affinity matrix. Journal of Immunological Methods, 1998, 215, 151-161.	1.4	35
77	Phage Display. Chemical Reviews, 1997, 97, 391-410.	47.7	1,502