Marc Roig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2881815/publications.pdf

Version: 2024-02-01

39 2,810 24 39 papers citations h-index g-index

40 40 40 2837 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Does the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Modulate the Effects of Physical Activity and Exercise on Cognition?. Neuroscientist, 2022, 28, 69-86.	3.5	10
2	Exercising the Sleepy-ing Brain: Exercise, Sleep, and Sleep Loss on Memory. Exercise and Sport Sciences Reviews, 2022, 50, 38-48.	3.0	9
3	What are the effects of acute exercise and exercise training on cerebrovascular hemodynamics following stroke? A systematic review and meta-analysis. Journal of Applied Physiology, 2022, 132, 1379-1393.	2.5	6
4	Intensity matters: protocol for a randomized controlled trial exercise intervention for individuals with chronic stroke. Trials, $2022, 23, .$	1.6	4
5	The effects of exercise on sleep quality in persons with Parkinson's disease: A systematic review with meta-analysis. Sleep Medicine Reviews, 2021, 55, 101384.	8.5	39
6	Canadian Platform for Trials in Noninvasive Brain Stimulation (CanStim) Consensus Recommendations for Repetitive Transcranial Magnetic Stimulation in Upper Extremity Motor Stroke Rehabilitation Trials. Neurorehabilitation and Neural Repair, 2021, 35, 103-116.	2.9	5
7	Aerobic exercise and aerobic fitness level do not modify motor learning. Scientific Reports, 2021, 11, 5366.	3.3	6
8	Prolonged Elevation of Arterial Stiffness Following Peak Aerobic Exercise in Individuals With Chronic Stroke. Frontiers in Physiology, 2021, 12, 666171.	2.8	5
9	Acute and Chronic Exercise Effects on Human Memory: What We Know and Where to Go from Here. Journal of Clinical Medicine, 2021, 10, 4812.	2.4	18
10	Exercise Improves Video Game Performance: A Win–Win Situation. Medicine and Science in Sports and Exercise, 2020, 52, 1595-1602.	0.4	19
11	HIITing the brain with exercise: mechanisms, consequences and practical recommendations. Journal of Physiology, 2020, 598, 2513-2530.	2.9	92
12	Acute Exercise Protects Newly Formed Motor Memories Against rTMS-induced Interference Targeting Primary Motor Cortex. Neuroscience, 2020, 436, 110-121.	2.3	12
13	Exercise Reduces Competition between Procedural and Declarative Memory Systems. ENeuro, 2020, 7, ENEURO.0070-20.2020.	1.9	7
14	Unfolding the Effects of Acute Cardiovascular Exercise on Neural Correlates of Motor Learning Using Convolutional Neural Networks. Frontiers in Neuroscience, 2019, 13, 1215.	2.8	3
15	The Beneficial Effect of Acute Exercise on Motor Memory Consolidation is Modulated by Dopaminergic Gene Profile. Journal of Clinical Medicine, 2019, 8, 578.	2.4	12
16	High-Intensity Interval Training After Stroke: An Opportunity to Promote Functional Recovery, Cardiovascular Health, and Neuroplasticity. Neurorehabilitation and Neural Repair, 2018, 32, 543-556.	2.9	89
17	Acute cardiovascular exercise does not enhance locomotor learning in people with stroke. Journal of Physiology, 2018, 596, 1785-1786.	2.9	2
18	Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation. Neurolmage, 2018, 174, 380-392.	4.2	65

#	Article	IF	Citations
19	The effects of aging on cortico-spinal excitability and motor memory consolidation. Neurobiology of Aging, 2018, 70, 254-264.	3.1	12
20	A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke. Neurorehabilitation and Neural Repair, 2017, 31, 726-735.	2.9	81
21	Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children. Frontiers in Human Neuroscience, 2017, 11, 182.	2.0	31
22	Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing. Neural Plasticity, 2016, 2016, 1-11.	2.2	66
23	The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task. PLoS ONE, 2016, 11, e0150039.	2.5	69
24	Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory. Neurobiology of Learning and Memory, 2016, 136, 196-203.	1.9	67
25	Time-Dependent Effects of Cardiovascular Exercise on Memory. Exercise and Sport Sciences Reviews, 2016, 44, 81-88.	3.0	119
26	Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity. PLoS ONE, 2016, 11, e0159589.	2.5	97
27	Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 2014, 116, 46-58.	1.9	261
28	Aging increases the susceptibility to motor memory interference and reduces off-line gains in motor skill learning. Neurobiology of Aging, 2014, 35, 1892-1900.	3.1	51
29	The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 2013, 37, 1645-1666.	6.1	342
30	Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Medicine, 2013, 11, 137.	5.5	134
31	A Single Bout of Exercise Improves Motor Memory. PLoS ONE, 2012, 7, e44594.	2.5	206
32	Preservation of eccentric strength in older adults: Evidence, mechanisms and implications for training and rehabilitation. Experimental Gerontology, 2010, 45, 400-409.	2.8	113
33	Associations of the Stair Climb Power Test With Muscle Strength and Functional Performance in People With Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study. Physical Therapy, 2010, 90, 1774-1782.	2.4	46
34	Top-Cited Articles in Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2010, 91, 806-815.	0.9	113
35	Electrical stimulation and peripheral muscle function in COPD: A systematic review. Respiratory Medicine, 2009, 103, 485-495.	2.9	47
36	The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. British Journal of Sports Medicine, 2009, 43, 556-568.	6.7	423

#	Article	IF	CITATIONS
37	Eccentric Exercise in Patients with Chronic Health Conditions: A Systematic Review. Physiotherapy Canada Physiotherapie Canada, 2008, 60, 146-160.	0.6	56
38	Post-exercise ingestion of a unique, high molecular weight glucose polymer solution improves performance during a subsequent bout of cycling exercise. Journal of Sports Sciences, 2008, 26, 149-154.	2.0	29
39	Eccentric muscle actions: Implications for injury prevention and rehabilitation. Physical Therapy in Sport, 2007, 8, 88-97.	1.9	44