In Kap Ko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880910/publications.pdf Version: 2024-02-01

ΙΝ ΚΛΡΚΟ

#	Article	IF	CITATIONS
1	A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 2016, 34, 312-319.	17.5	2,078
2	In situ tissue regeneration through host stem cell recruitment. Experimental and Molecular Medicine, 2013, 45, e57-e57.	7.7	202
3	3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Scientific Reports, 2018, 8, 12307.	3.3	166
4	Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nature Communications, 2020, 11, 1025.	12.8	130
5	Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials, 2015, 40, 72-79.	11.4	127
6	Combined systemic and local delivery of stem cell inducing/recruiting factors for <i>in situ</i> tissue regeneration. FASEB Journal, 2012, 26, 158-168.	0.5	72
7	Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomaterialia, 2016, 29, 52-61.	8.3	67
8	Kidney diseases and tissue engineering. Methods, 2016, 99, 112-119.	3.8	50
9	Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomaterialia, 2018, 75, 226-234.	8.3	48
10	The effect of inÂvitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs inÂvivo. Biomaterials, 2013, 34, 3246-3255.	11.4	43
11	Enhanced re-endothelialization of acellular kidney scaffolds for whole organ engineering via antibody conjugation of vasculatures. Technology, 2014, 02, 243-253.	1.4	43
12	Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts. Acta Biomaterialia, 2016, 32, 190-197.	8.3	38
13	Bioartificial Kidneys. Current Stem Cell Reports, 2017, 3, 68-76.	1.6	29
14	Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair. Scientific Reports, 2016, 6, 38754.	3.3	28
15	State-of-the-Art Strategies for the Vascularization of Three-Dimensional Engineered Organs. Vascular Specialist International, 2019, 35, 77-89.	0.6	26
16	Reno-protection of Urine-derived Stem Cells in A Chronic Kidney Disease Rat Model Induced by Renal Ischemia and Nephrotoxicity. International Journal of Biological Sciences, 2020, 16, 435-446.	6.4	26
17	Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts. Acta Biomaterialia, 2019, 95, 328-336.	8.3	21
18	Induction of multiple ovulation via modulation of angiotensin II receptors in in vitro ovarian follicle culture models. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3100-3110.	2.7	20

In Kap Ko

#	Article	IF	CITATIONS
19	Cell-based therapy for kidney disease. Korean Journal of Urology, 2015, 56, 412.	1.2	19
20	Controlled Delivery of Stem Cell-Derived Trophic Factors Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury in Rats. Stem Cells Translational Medicine, 2019, 8, 959-970.	3.3	12
21	Effect of Human Amniotic Fluid Stem Cells on Kidney Function in a Model of Chronic Kidney Disease. Tissue Engineering - Part A, 2019, 25, 1493-1503.	3.1	12
22	Bioactive Compounds for the Treatment of Renal Disease. Yonsei Medical Journal, 2018, 59, 1015.	2.2	8
23	Pelvic floor muscle function recovery using biofabricated tissue constructs with neuromuscular junctions. Acta Biomaterialia, 2021, 121, 237-249.	8.3	8
24	Accelerating neovascularization and kidney tissue formation with a 3D vascular scaffold capturing native vascular structure. Acta Biomaterialia, 2021, 124, 233-243.	8.3	7
25	The Delivery of the Recombinant Protein Cocktail Identified by Stem Cell-Derived Secretome Analysis Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	4
26	Cell-derived Secretome for the Treatment of Renal Disease. Childhood Kidney Diseases, 2019, 23, 67-76.	0.4	1
27	Use of uniformly sized muscle fiber fragments for restoration of muscle tissue function. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1230-1240.	2.7	0