Nikolay I Zheludev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880421/publications.pdf

Version: 2024-02-01

594 papers 36,523 citations

97 h-index

2427

181 g-index

612 all docs

612 docs citations

times ranked

612

18723 citing authors

#	Article	IF	CITATIONS
1	Optical superoscillation technologies beyond the diffraction limit. Nature Reviews Physics, 2022, 4, 16-32.	26.6	44
2	Non-contact optical magnetic field sensor based on metamaterial nanomechanics. APL Photonics, 2022, 7, .	5.7	7
3	Deep-Learning-Assisted Focused Ion Beam Nanofabrication. Nano Letters, 2022, 22, 2734-2739.	9.1	7
4	Thermal Fluctuations of the Optical Properties of Nanomechanical Photonic Metamaterials. Advanced Optical Materials, 2022, 10, .	7.3	8
5	Optical Control of Nanomechanical Brownian Motion Eigenfrequencies in Metamaterials. Nano Letters, 2022, 22, 4301-4306.	9.1	6
6	Observation of toroidal pulses of light. Nature Photonics, 2022, 16, 523-528.	31.4	58
7	Deterministic generation of entanglement in a quantum network by coherent absorption of a single photon. Physical Review A, 2022, 106, .	2.5	7
8	Germaniumâ€onâ€Carborundum Surface Phononâ€Polariton Infrared Metamaterial. Advanced Optical Materials, 2021, 9, 2001652.	7.3	7
9	Electrogyration in Metamaterials: Chirality and Polarization Rotatory Power that Depend on Applied Electric Field. Advanced Optical Materials, 2021, 9, 2001826.	7.3	16
10	Unlabeled Farâ€Field Deeply Subwavelength Topological Microscopy (DSTM). Advanced Science, 2021, 8, 2002886.	11.2	21
11	Detection of sub-atomic movement in nanostructures. Nanoscale Advances, 2021, 3, 2213-2216.	4.6	0
12	Mirror-Symmetric Patterning of Topological Insulator Reverses Photogalvanic Currents., 2021,,.		0
13	Observation of Toroidal Light Pulses. , 2021, , .		12
14	10.1063/5.0015363.1., 2021,,.		0
15	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	6.6	2
16	Measures of space-time nonseparability of electromagnetic pulses. Physical Review Research, 2021, 3, .	3.6	27
17	Second harmonic generation in amorphous silicon-on-silica metamaterial. APL Photonics, 2021, 6, .	5.7	8
18	Cellular automata dynamics of nonlinear optical processes in a phase-change material. Applied Physics Reviews, 2021, 8, .	11.3	3

#	Article	IF	CITATIONS
19	Topological insulator metamaterial with giant circular photogalvanic effect. Science Advances, 2021, 7, .	10.3	23
20	Gigahertz Nano-Optomechanical Resonances in a Dielectric SiC-Membrane Metasurface Array. Nano Letters, 2021, 21, 4563-4569.	9.1	13
21	Deeply sub-wavelength non-contact optical metrology of sub-wavelength objects. APL Photonics, 2021, 6, .	5.7	10
22	Deeply Sub-Wavelength Non-Contact Optical Metrology of Sub-Wavelength Objects., 2021,,.		1
23	Non-Local Control of Light Dissipation with Pancharatnam-Berry Phase. , 2021, , .		0
24	Optical magnetic response without metamaterials. APL Photonics, 2021, 6, 071303.	5.7	1
25	Visualization of Subatomic Movements in Nanostructures. Nano Letters, 2021, 21, 7746-7752.	9.1	3
26	Deterministic Generation of Entanglement in Quantum Networks by Distributed Coherent Absorption. , 2021, , .		0
27	ANTI Hong-Ou-Mandel Interference on a Lossy Beamsplitter. , 2021, , .		0
28	Artificial intelligence for photonics and photonic materials. Reports on Progress in Physics, 2021, 84, 012401.	20.1	31
29	Spatio-temporal characterization of ultrashort vector pulses. APL Photonics, 2021, 6, .	5.7	10
30	Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nature Communications, 2021, 12, 5891.	12.8	71
31	Optomechanical metamaterial nanobolometer. APL Photonics, 2021, 6, .	5 . 7	10
32	Building Blocks for Quantum Network Based on Groupâ€IV Splitâ€Vacancy Centers in Diamond. Advanced Quantum Technologies, 2020, 3, 1900069.	3.9	28
33	Metamaterial Enhancement of Metal-Halide Perovskite Luminescence. Nano Letters, 2020, 20, 7906-7911.	9.1	23
34	Superoscillatory quartz lens with effective numerical aperture greater than one. Applied Physics Letters, 2020, 117, 021106.	3.3	9
35	Far-field unlabeled super-resolution imaging with superoscillatory illumination. APL Photonics, 2020, 5, .	5.7	25
36	Enhancement of luminescence of quantum emitters in epsilon-near-zero waveguides. Applied Physics Letters, 2020, 117, 181104.	3.3	14

3

#	Article	IF	Citations
37	Space-time nonseparable pulses: Constructing isodiffracting donut pulses from plane waves and single-cycle pulses. Physical Review A, 2020, 102 , .	2.5	11
38	Plasmono-atomic interactions on a fiber tip. Applied Physics Letters, 2020, 116, .	3.3	5
39	Near-field mapping of the edge mode of a topological valley slab waveguide at λ â€^ = 1.55 <i>μ </i> m. Applied Physics Letters, 2020, 116, .	3.3	16
40	Infrared dielectric metamaterials from high refractive index chalcogenides. Nature Communications, 2020, 11, 1692.	12.8	45
41	Label-free deeply subwavelength optical microscopy. Applied Physics Letters, 2020, 116, .	3.3	16
42	Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons. Nature Communications, 2020, 11, 1863.	12.8	39
43	Phase stabilization of a coherent fiber network by single-photon counting. Optics Letters, 2020, 45, 2740.	3.3	9
44	Ultraviolet hollow-core waveguides with sub-unitary index chalcogenide cladding. Optical Materials Express, 2020, 10, 2254.	3.0	3
45	Emission of Diamond NV Centers in Dielectric, Semiconducting and Plasmonic Environments. , 2020, , .		0
46	Deep Subwavelength Singularity Imaging Beyond \hat{l} »/100. , 2020, , .		0
47	Planar Resonators Supporting Extremely Confined Phonon-Polariton Modes. , 2020, , .		0
48	Topological Insulator Chalcogenides for Infrared Dielectric Metamaterials. , 2020, , .		0
49	Generation of Topological Space-Time Non-Separable Light Pulses. , 2020, , .		0
50	Optical Gating of Resonance Fluorescence from a Single Germanium Vacancy Color Center in Diamond. Physical Review Letters, 2019, 123, 033602.	7.8	31
51	Coupling of atomic quadrupole transitions with resonant surface plasmons. Physical Review A, 2019, 99, .	2.5	10
52	Optical anapoles. Communications Physics, 2019, 2, .	5.3	108
53	Roadmap on metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 073002.	2.2	146
54	Mechanochromic Reconfigurable Metasurfaces. Advanced Science, 2019, 6, 1900974.	11.2	23

#	Article	IF	CITATIONS
55	Fiber-integrated phase-change reconfigurable optical attenuator. APL Photonics, 2019, 4, .	5.7	16
56	Femtosecond Laser Assisted Fabrication of Visible Wavelength All-Dielectric Nano-Membrane Metasurfaces. , 2019, , .		0
57	Cooperative field localization and excitation eigenmodes in disordered metamaterials. Physical Review B, 2019, 99, .	3.2	2
58	Singularities in the flying electromagnetic doughnuts. Nanophotonics, 2019, 8, 1379-1385.	6.0	20
59	Far-Field Superoscillatory Metamaterial Superlens. Physical Review Applied, 2019, 11, .	3.8	77
60	Detecting nanometric displacements with optical ruler metrology. Science, 2019, 364, 771-775.	12.6	95
61	Roadmap on superoscillations. Journal of Optics (United Kingdom), 2019, 21, 053002.	2.2	111
62	Cryptography in coherent optical information networks using dissipative metamaterial gates. APL Photonics, 2019, 4, 046102.	5.7	7
63	Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Science Advances, 2019, 5, eaav4506.	10.3	108
64	Seeing the future from the past. Nature Photonics, 2019, 13, 221-222.	31.4	2
65	Reconfigurable Ultraviolet and High-Energy Visible Dielectric Metamaterials. Nano Letters, 2019, 19, 1643-1648.	9.1	61
66	Stoichiometric Engineering of Chalcogenide Semiconductor Alloys for Nanophotonic Applications. Advanced Materials, 2019, 31, e1807083.	21.0	32
67	Controlling Light with Light via Interference on Photonic Metamaterials. Springer Series in Optical Sciences, 2019, , 239-265.	0.7	0
68	Metamaterials, Anapoles and Flying Donuts. , 2019, , .		0
69	Anapoles and Flying Doughnuts. , 2019, , .		0
70	A Topologically Robust Formation of Broadband Vortices Propagating at the Speed of Light. , 2019, , .		0
71	Coherent perfect absorption of single photons in a fiber network. Applied Physics Letters, 2019, 115, .	3.3	9
72	Nonlinear control of coherent absorption and its optical signal processing applications. APL Photonics, 2019, 4, 106109.	5.7	1

#	Article	IF	Citations
73	Metamaterials for generating space-time coupled few-cycle pulses. , 2019, , .		O
74	Giant Electroâ€Optical Effect through Electrostriction in a Nanomechanical Metamaterial. Advanced Materials, 2019, 31, e1804801.	21.0	19
75	Coherent metamaterial absorption of two-photon states with 40% efficiency. Physical Review A, 2019, 99, .	2.5	25
76	"Plasmonics―in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. Light: Science and Applications, 2019, 8, 2.	16.6	52
77	Reconfigurable MEMS metasurface for active tuning of Fano resonance and logic gate operations at THz frequencies. , $2019, $, .		0
78	Quantum State Filtering of Dual-rail Photons with Fiberized Plasmonic Metamaterial., 2019,,.		0
79	Tuning the surface Casimir-Polder interaction. , 2019, , .		0
80	Ultrafast Coherent Absorption in Diamond Metamaterials. Advanced Materials, 2018, 30, e1707354.	21.0	16
81	Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001.	2.2	240
82	Light, the universe and everything – 12 Herculean tasks for quantum cowboys and black diamond skiers. Journal of Modern Optics, 2018, 65, 1261-1308.	1.3	6
83	Optical Anapole Metamaterial. ACS Nano, 2018, 12, 1920-1927.	14.6	216
84	Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nature Communications, 2018, 9, 182.	12.8	73
85	Direction-division multiplexed holographic free-electron-driven light sources. Applied Physics Letters, 2018, 112, .	3.3	6
86	Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. Nature Communications, 2018, 9, 1762.	12.8	59
87	All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface. Light: Science and Applications, 2018, 7, 17157-17157.	16.6	42
88	Magneto-optical response in bimetallic metamaterials. Nanophotonics, 2018, 7, 199-206.	6.0	19
89	Photonic Metamaterials: Optical Response of Nanohole Arrays Filled with Chalcogenide Low-Epsilon Media (Advanced Optical Materials 22/2018). Advanced Optical Materials, 2018, 6, 1870088.	7.3	0
90	Strong interactions and subradiance in disordered metamaterials. Physical Review B, 2018, 98, .	3.2	11

#	Article	IF	Citations
91	All-dielectric free-electron-driven holographic light sources. Applied Physics Letters, 2018, 113, .	3.3	5
92	Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nature Communications, 2018, 9, 4056.	12.8	200
93	Optical Response of Nanohole Arrays Filled with Chalcogenide Lowâ€Epsilon Media. Advanced Optical Materials, 2018, 6, 1800395.	7.3	12
94	Switchable Metamaterials: A Non-Volatile Chalcogenide Switchable Hyperbolic Metamaterial (Advanced Optical Materials 19/2018). Advanced Optical Materials, 2018, 6, 1870074.	7.3	0
95	Pulse generation scheme for flying electromagnetic doughnuts. Physical Review B, 2018, 97, .	3.2	32
96	Optical NP problem solver on laser-written waveguide platform. Optics Express, 2018, 26, 702.	3.4	16
97	Variable Environmental Index Spectroscopy in Metamaterials. , 2018, , .		1
98	Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber. Applied Physics Letters, $2018,113,.$	3.3	15
99	Far-field Metamaterial Superlens. , 2018, , .		0
100	Optical bistability in shape-memory nanowire metamaterial array. Applied Physics Letters, 2018, 113, .	3.3	22
101	A Nonâ€Volatile Chalcogenide Switchable Hyperbolic Metamaterial. Advanced Optical Materials, 2018, 6, 1800332.	7.3	16
102	Compositionally controlled plasmonics in amorphous semiconductor metasurfaces. Optics Express, 2018, 26, 20861.	3.4	12
103	Optical addressing of nanomechanical metamaterials with subwavelength resolution. Applied Physics Letters, 2018, 113, .	3.3	9
104	Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces. NPG Asia Materials, 2018, 10, 533-539.	7.9	108
105	Launching Electromagnetic Donuts: Non-transverse electromagnetic pulses. , 2018, , .		1
106	Extraordinary Properties of Epsilon-Near-Zero and Low-Index Chalcogenide Metamaterials., 2018,,.		1
107	Breaking up the Anapole: or How to Separate Toroidal and Electric Dipole Excitations in Matter. , 2018, , .		1
108	Enhanced Luminescence of MoS2, WS2 and WSe2, Direct Band Gap Semiconductor Heterostructures. , 2018, , .		1

#	Article	IF	CITATIONS
109	A Fiberized Metamaterial Device for Ultrafast Control of Coherent Optical Signals. , 2018, , .		O
110	All-Optical Pattern Recognition and Image Processing on a Metamaterial Beam Splitter. ACS Photonics, 2017, 4, 217-222.	6.6	37
111	Novel paradigm for integrated photonics circuits: transient interconnection network., 2017,,.		4
112	New horizons for nanophotonics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160380.	3.4	3
113	Reconfigurable phase-change photomask for grayscale photolithography. Applied Physics Letters, 2017, 110, .	3.3	22
114	New Super-Oscillatory Technology for Unlabelled Super-Resolution Cellular Imaging with Polarisation Contrast. Biophysical Journal, 2017, 112, 186a.	0.5	6
115	Plasmonic absorption properties of bimetallic metamaterials. Microelectronic Engineering, 2017, 172, 30-34.	2.4	2
116	Coherent selection of invisible high-order electromagnetic excitations. Scientific Reports, 2017, 7, 44488.	3.3	23
117	Organometallic Perovskite Metasurfaces. Advanced Materials, 2017, 29, 1604268.	21.0	118
118	Controlling the Optical Response of 2D Matter in Standing Waves. ACS Photonics, 2017, 4, 3000-3011.	6.6	28
118	Controlling the Optical Response of 2D Matter in Standing Waves. ACS Photonics, 2017, 4, 3000-3011. Plasmonics of topological insulators at optical frequencies. NPG Asia Materials, 2017, 9, e425-e425.	6.6 7.9	28
119	Plasmonics of topological insulators at optical frequencies. NPG Asia Materials, 2017, 9, e425-e425.	7.9	65
119	Plasmonics of topological insulators at optical frequencies. NPG Asia Materials, 2017, 9, e425-e425. Exciting dynamic anapoles with electromagnetic doughnut pulses. Applied Physics Letters, 2017, 111, . Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides	7.9	65 34
119 120 121	Plasmonics of topological insulators at optical frequencies. NPG Asia Materials, 2017, 9, e425-e425. Exciting dynamic anapoles with electromagnetic doughnut pulses. Applied Physics Letters, 2017, 111, . Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Letters, 2017, 17, 6475-6480. High-quality metamaterial dispersive grating on the facet of an optical fiber. Applied Physics Letters,	7.9 3.3 9.1	65 34 44
119 120 121 122	Plasmonics of topological insulators at optical frequencies. NPG Asia Materials, 2017, 9, e425-e425. Exciting dynamic anapoles with electromagnetic doughnut pulses. Applied Physics Letters, 2017, 111, . Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Letters, 2017, 17, 6475-6480. High-quality metamaterial dispersive grating on the facet of an optical fiber. Applied Physics Letters, 2017, 111, .	7.9 3.3 9.1 3.3	65344431
119 120 121 122	Plasmonics of topological insulators at optical frequencies. NPG Asia Materials, 2017, 9, e425-e425. Exciting dynamic anapoles with electromagnetic doughnut pulses. Applied Physics Letters, 2017, 111, . Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Letters, 2017, 17, 6475-6480. High-quality metamaterial dispersive grating on the facet of an optical fiber. Applied Physics Letters, 2017, 111, . Spontaneous natural optical activity in disordered media. Physical Review B, 2017, 95, .	7.9 3.3 9.1 3.3	6534443112

#	Article	IF	Citations
127	Many-Body Subradiant Excitations in Metamaterial Arrays: Experiment and Theory. Physical Review Letters, 2017, 119, 053901.	7.8	73
128	Visible Range Plasmonic Modes on Topological Insulator Nanostructures. Advanced Optical Materials, 2017, 5, 1600768.	7.3	55
129	Nanopatterning-enhanced perovskite luminophores. , 2017, , .		0
130	Coherent absorption of two-photon states in metamaterials. , 2017, , .		0
131	Ultra confined polaritons in atomically layered dielectrics. , 2017, , .		0
132	Optical bistability in optomechanical metamaterial at sub-milliwatt power levels., 2017,,.		0
133	Metamaterials: Optical properties on demand. , 2017, , .		0
134	Generation of electromagnetic doughnuts. , 2017, , .		1
135	11-fs dark pulses generated via coherent absorption in plasmonic metamaterial. Optics Express, 2017, 25, 22620.	3.4	12
136	Achromatic super-oscillatory lenses with sub-wavelength focusing. Light: Science and Applications, 2017, 6, e17036-e17036.	16.6	121
137	Plasmonic properties of superconducting niobium in the optical part of the spectrum. , 2017, , .		1
138	Dissipative optical switch for coherent fibre networks with 100 THz bandwidth., 2017,,.		1
139	Combinatorial search for plasmonic and epsilon-near-zero chalcogenide alloys. , 2017, , .		0
140	Merging Photonic Metamaterial and Optical Fiber Technologies. , 2017, , .		0
141	Plasmonic toroidal excitation with engineering metamaterials. , 2017, , .		О
142	Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial. Advanced Materials, 2016, 28, 729-733.	21.0	82
143	Nano―and Microâ€Auxetic Plasmonic Materials. Advanced Materials, 2016, 28, 5176-5180.	21.0	32
144	Holographic free-electron light source. Nature Communications, 2016, 7, 13705.	12.8	66

#	Article	IF	Citations
145	All-Optical Implementation of the Ant Colony Optimization Algorithm. Scientific Reports, 2016, 6, 26283.	3.3	8
146	Giant nonlinearity in a superconducting sub-terahertz metamaterial. Applied Physics Letters, 2016, 108,	3.3	24
147	Templated assembly of metal nanoparticle films on polymer substrates. Applied Physics Letters, 2016, 109, 263105.	3.3	3
148	Random access actuation of nanowire grid metamaterial. Nanotechnology, 2016, 27, 485206.	2.6	16
149	Coherent control of light-matter interactions in polarization standing waves. Scientific Reports, 2016, 6, 31141.	3.3	35
150	Specular optical activity of achiral metasurfaces. Applied Physics Letters, 2016, 108, .	3.3	29
151	Invited Article: All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial. APL Photonics, 2016, 1 , .	5.7	47
152	All-dielectric phase-change reconfigurable metasurface. Applied Physics Letters, 2016, 109, .	3.3	214
153	Metadevice for intensity modulation with sub-wavelength spatial resolution. Scientific Reports, 2016, 6, 37109.	3.3	15
154	Atomic Response in the Near-Field of Nanostructured Plasmonic Metamaterial. Nano Letters, 2016, 16, 3137-3141.	9.1	38
155	Two-dimensional control of light with light on metasurfaces. Light: Science and Applications, 2016, 5, e16070-e16070.	16.6	106
156	Doppler-free approach to optical pumping dynamics in the 6S_1/2â^3D_5/2 electric quadrupole transition of cesium vapor. Optics Letters, 2016, 41, 2005.	3.3	25
157	Spatial optical phase-modulating metadevice with subwavelength pixelation. Optics Express, 2016, 24, 18790.	3.4	16
158	Quantum super-oscillation of a single photon. Light: Science and Applications, 2016, 5, e16127-e16127.	16.6	41
159	Toroidal circular dichroism. Physical Review B, 2016, 94, .	3.2	57
160	Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures. Optics Express, 2016, 24, 3150.	3.4	24
161	Coherent Excitation-Selective Spectroscopy of Multipole Resonances. Physical Review Applied, 2016, 5, .	3.8	43
162	Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods. Physical Review B, 2016, 93, .	3.2	38

#	Article	IF	CITATIONS
163	Sharp Toroidal Resonances in Planar Terahertz Metasurfaces. Advanced Materials, 2016, 28, 8206-8211.	21.0	148
164	Randomly addressable photonic metamaterials. , 2016, , .		0
165	Planar toroidal metamaterials. , 2016, , .		0
166	Plasmonic metadevices by vertical split ring resonator., 2016,,.		0
167	Introducing the metamaterial roadmap. Journal of Optics (United Kingdom), 2016, 18, 090201.	2.2	2
168	Electromagnetic toroidal excitations in matter and free space. Nature Materials, 2016, 15, 263-271.	27. 5	433
169	Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 2016, 10, 60-65.	31.4	918
170	Reconfigurable nanomechanical photonic metamaterials. Nature Nanotechnology, 2016, 11, 16-22.	31.5	273
171	All-optical Image Recognition and Processing with Plasmonic Metasurfaces. , 2016, , .		1
172	Shape Memory Photonic Metamaterial., 2016,,.		1
173	Visible Range Plasmons in Topological Insulators. , 2016, , .		1
174	All-Optical Image Recognition Using Metamaterials. , 2016, , .		1
175	Sub-GHz Modulation of Light with Dielectric Nanomechanical Metamaterials. , 2016, , .		0
176	Plasmonic metal-cored fibres. , 2016, , .		0
177	Tailoring Optical Super-Oscillations with Metasurfaces. , 2016, , .		0
178	Metasurface Holographic Light Sources Driven by Electron Beam. , 2016, , .		0
179	Reconfigurable hyperbolic metamaterial with negative refraction. , 2016, , .		2
180	Playing a Metamaterial Guitar with Light: Optically Addressable Nanomechanical Metamaterial. , 2016, , .		0

#	Article	IF	Citations
181	Dielectric Metamaterials with Toroidal Dipolar Response. Physical Review X, 2015, 5, .	8.9	145
182	Nano-optomechanical nonlinear dielectric metamaterials. Applied Physics Letters, 2015, 107, .	3.3	61
183	Geometries for the coherent control of four-wave mixing in graphene multilayers. Scientific Reports, 2015, 5, 15399.	3.3	18
184	A Flat Lens with Tunable Phase Gradient by Using Random Access Reconfigurable Metamaterial. Advanced Materials, 2015, 27, 4739-4743.	21.0	121
185	The reduction of surface plasmon losses in quasi-suspended graphene. Scientific Reports, 2015, 5, 9837.	3.3	18
186	Chiral mirrors. Applied Physics Letters, 2015, 106, .	3.3	166
187	Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nature Communications, 2015, 6, 7031.	12.8	160
188	Obtaining optical properties on demand. Science, 2015, 348, 973-974.	12.6	101
189	A new type of optical activity in a toroidal metamaterial. , 2015, , .		0
190	Fabrication and measurement of vertical split-ring resonators for light manipulation and metasurface. , 2015, , .		0
191	Reconfigurable and coherently controlled photonic metamaterials: A platform for optical properties on demand. , 2015, , .		0
192	Wavevector Selective Metasurfaces and Tunnel Vision Filters. Light: Science and Applications, 2015, 4, e306-e306.	16.6	30
193	Vertical split-ring resonators based plasmon coupling, nanophotonic sensing and light manipulation. , 2015, , .		0
194	Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch. Advanced Optical Materials, 2015, 3, 674-679.	7.3	170
195	<i>Journal of Optics</i> : our strategy for the future. Journal of Optics (United Kingdom), 2015, 17, 010201.	2.2	1
196	Coherent control of optical polarization effects in metamaterials. Scientific Reports, 2015, 5, 8977.	3.3	54
197	Plasmon coupling in vertical split-ring resonator metamolecules. Scientific Reports, 2015, 5, 9726.	3.3	71
198	Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light: Science and Applications, 2015, 4, e292-e292.	16.6	130

#	Article	IF	CITATIONS
199	A magneto-electro-optical effect in a plasmonic nanowire material. Nature Communications, 2015, 6, 7021.	12.8	118
200	Effect of Zn(O,S) buffer layer thickness on charge carrier relaxation dynamics of CuInSe2 solar cell. Solar Energy, 2015, 115, 396-404.	6.1	18
201	Reconfiguring photonic metamaterials with currents and magnetic fields. Applied Physics Letters, 2015, 106, .	3.3	38
202	Plasmon coupling in vertical split-ring resonator magnetic metamolecules., 2015,,.		1
203	Amplification of the Evanescent Field of Free Electrons. ACS Photonics, 2015, 2, 1236-1240.	6.6	36
204	Super-Oscillatory Imaging of Nanoparticle Interactions with Neurons. Biophysical Journal, 2015, 108, 479a.	0.5	5
205	Optically switchable photonic metasurfaces. Applied Physics Letters, 2015, 107, .	3.3	36
206	Optical toroidal response in three-dimensional plasmonic metamaterial., 2015,,.		4
207	Vertical split-ring resonators for plasmon coupling, sensing and metasurface. Proceedings of SPIE, 2015, , .	0.8	1
208	Lorentz Force Metamaterial with Giant Optical Magnetoelectric Response. , 2014, , .		1
209	Optical Properties on Demand: Reconfigurable and Coherently Controlled Metamaterials. , 2014, , .		0
210	Optical properties on demand (2): Coherent control of metamaterials and metadevices. , 2014, , .		0
211	An optical fiber network oracle for NP-complete problems. Light: Science and Applications, 2014, 3, e147-e147.	16.6	47
212	Coherent control of Snell's law at metasurfaces. Optics Express, 2014, 22, 21051.	3.4	84
213	Giant magnetic modulation of a planar, hybrid metamolecule resonance. New Journal of Physics, 2014, 16, 063002.	2.9	20
214	Metamaterial NEMS: Giant optical nonlinearity and magnetoelectricl effect. , 2014, , .		0
215	Plasmonic Nanowire Continuum Light Source. , 2014, , .		1
216	Wavevector selective surface. , 2014, , .		1

#	Article	IF	CITATIONS
217	Plasmonic Super-oscillations and Sub-Diffraction Focusing. , 2014, , .		1
218	Planar Superconducting Toroidal Metamaterial: A Source for Oscillating Vector-Potential?., 2014,,.		0
219	Tunable Liquid Crystal-loaded Metasurfaces for IR and THz Applications. , 2014, , .		0
220	Giant Kerr Rotation Enhancement in Magneto-plasmonic Metamaterials. , 2014, , .		4
221	Coherent Excitation-Selective Spectroscopy in Planar Metamaterials. , 2014, , .		1
222	Controlling Light with Light in a Plasmonic Nanooptomechanical Metamaterial., 2014,,.		1
223	Photophysical investigation of charge recombination in CdS/ZnO layers of CuIn(S,Se) < sub > 2 < /sub > solar cell. RSC Advances, 2014, 4, 58372-58376.	3.6	5
224	Metamaterials: From 3D Plasmonic Nanostructure to Reflective Metasurface. , 2014, , .		0
225	Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution. Optics Express, 2014, 22, 6428.	3.4	48
226	Computing matrix inversion with optical networks. Optics Express, 2014, 22, 295.	3.4	27
227	Coherent control of birefringence and optical activity. Applied Physics Letters, 2014, 105, .	3.3	45
228	Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Physical Review B, 2014, 89, .	3.2	276
229	Controlling light on the nanoscale with chalcogenide thin films. , 2014, , 471-508.		2
230	Point spread function of the optical needle super-oscillatory lens. Applied Physics Letters, 2014, 104, .	3.3	48
231	1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage. Applied Physics Letters, 2014, 104, .	3.3	55
232	Fiber optic probe of free electron evanescent fields in the optical frequency range. Applied Physics Letters, 2014, 104, 201101.	3.3	14
233	Computing with complex optical networks. , 2014, , .		1
234	Three-dimensional metamaterials: from split ring resonator to toroidal metamolecule. , 2014, , .		6

#	Article	IF	CITATIONS
235	Giant sub-THz Nonlinear Response in Superconducting Metamaterial. , 2014, , .		1
236	Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Applied Physics Letters, 2014, 104, .	3.3	135
237	Optical properties on demand (1): Reconfigurable metamaterials and metadevices. , 2014, , .		O
238	Superconductor photonics. Nature Photonics, 2014, 8, 679-680.	31.4	55
239	Plasmonic Nanoclocks. Nano Letters, 2014, 14, 5162-5169.	9.1	8
240	Giant optical forces in planar dielectric photonic metamaterials. Optics Letters, 2014, 39, 4883.	3. 3	33
241	Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nature Communications, 2014, 5, 5139.	12.8	129
242	Interaction of Flying Electromagnetic Doughnut with Nanostructures. , 2014, , .		0
243	Solid-immersion Super-oscillatory Lens for Heat Assisted Magnetic Recording Technology and Nanoscale Imaging. , 2014, , .		O
244	Noble-Metal-Free Sunlight Harvesting Meta-surface for Water Evaporation. , 2014, , .		0
245	Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Scientific Reports, 2014, 4, 6333.	3.3	116
246	Using Nonlinear Optical Networks for Optimization: Primer of the Ant Colony Algorithm. , 2014, , .		1
247	2D cognitive optical data processing with phase change materials. , 2014, , .		0
248	Coherent Control of Birefringence and Optical Activity. , 2014, , .		0
249	Plasmonic Properties and Photoinduced Reflectance of Topological Insulator. , 2014, , .		0
250	Adaptive Photonic Meta-surfaces Exploiting Interfacial Phase Change in Elemental Gallium. , 2014, , .		0
251	Detection, Amplification and Control of Free-Electron Nearfields. , 2014, , .		O
252	Chalcogenide Microfiber Photonic Synapses. , 2014, , .		0

#	Article	IF	CITATIONS
253	The magnetic response of graphene split-ring metamaterials. Light: Science and Applications, 2013, 2, e78-e78.	16.6	121
254	Ray-optics cloaking devices for large objects in incoherent natural light. Nature Communications, 2013, 4, 2652.	12.8	156
255	Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials. Scientific Reports, 2013, 3, 2967.	3.3	248
256	Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging. Journal of Optics (United Kingdom), 2013, 15, 094008.	2.2	164
257	Non-radiating excitations, vector potential waves and toroidal metamaterials. , 2013, , .		1
258	An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotechnology, 2013, 8, 252-255.	31.5	331
259	Toroidal Lasing Spaser. Scientific Reports, 2013, 3, 1237.	3.3	114
260	An Allâ€Optical, Nonâ€volatile, Bidirectional, Phaseâ€Change Metaâ€Switch. Advanced Materials, 2013, 25, 3050-3054.	21.0	409
261	All-optical, non-volatile, chalcogenide phase-change meta-switch. , 2013, , .		1
262	Sub-wavelength focusing meta-lens. Optics Express, 2013, 21, 7577.	3.4	61
263	Magnetic control of a meta-molecule. Optics Express, 2013, 21, 1456.	3.4	46
264	Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Optics Express, 2013, 21, 1633.	3.4	102
265	Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Applied Physics Letters, 2013, 103, .	3.3	49
266	Optical generation of intense ultrashort magnetic pulses at the nanoscale. New Journal of Physics, 2013, 15, 113035.	2.9	20
267	Optomechanical nonlinearity and bistability in dielectric metamaterials., 2013,,.		0
268	Optical excitation of unipolar tesla magnetic pulses in plasmonic nanostructures. , 2013, , .		0
269	Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Optics Express, 2013, 21, 26721.	3.4	159
270	Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer. Nanophotonics, 2013, 2, 153-160.	6.0	26

#	Article	IF	Citations
271	Super-oscillatory optical needle. Applied Physics Letters, 2013, 102, .	3.3	131
272	Optical magnetism in all-dielectric metamaterials. , 2013, , .		0
273	Dielectric photonic metamaterials. , 2013, , .		0
274	Magnetic graphene metamaterial. , 2013, , .		0
275	Plasmonic amplifier of the evanescent field of free electrons. , 2013, , .		0
276	Tunable light emission in reconfigurable plasmonic metamaterials. , 2013, , .		0
277	Electrically controlled liquid crystal plasmonic metamaterials. , 2013, , .		0
278	Fiber non-Turing all-optical computer for solving complex decision problems. , 2013, , .		1
279	Reconfigurable metamaterials controlled by Lorentz, ampere and coulomb forces: Towards GHz bandwidth., 2013,,.		0
280	Radiation-harvesting resonant superconducting sub-THz metamaterial bolometer. Superconductor Science and Technology, 2013, 26, 084001.	3.5	25
281	Nonlinear dielectric optomechanical metamaterials. Light: Science and Applications, 2013, 2, e96-e96.	16.6	69
282	Super-oscillatory Optical Needle for Heat Assisted Magnetic Recording., 2013,,.		0
283	Chalcogenide Glass Photonics: Non-volatile, Bi-directional, All-optical Switching in Phase-change Metamaterials. , 2012, , .		1
284	Magnetic plasmon induced transparency in three-dimensional metamolecules. Nanophotonics, 2012, 1, 131-138.	6.0	72
285	Metamaterial Coherent Light Absorption - The Time-reversed Analogue of the Lasing Spaser. , 2012, , .		1
286	Fabrication of three dimensional split ring resonators by stress-driven assembly method. Optics Express, 2012, 20, 9415.	3.4	54
287	Amplification of the Evanescent Field of Free Electrons. , 2012, , .		1
288	Design of plasmonic toroidal metamaterials at optical frequencies. Optics Express, 2012, 20, 1760.	3.4	153

#	Article	lF	Citations
289	MHz Bandwidth Electro-optical Modulator based on a Reconfigurable Photonic Metamaterial. , 2012, , .		2
290	Coherent Light Emission from Planar Plasmonic Metamaterials. , 2012, , .		1
291	Electro-optical modulation of sub-terahertz radiation with superconducting metamaterial. , 2012, , .		2
292	Flux Exclusion Quantum Superconducting Metamaterial. , 2012, , .		0
293	Toroidal photonic metamaterial., 2012,,.		0
294	Terahertz Bandwidth Optical Nonlinearity of Graphene Metamaterial., 2012,,.		1
295	Transformation Optics with Planar Metamaterials: Diffraction Grating and Lens. , 2012, , .		0
296	Electron-Beam-Driven Collective-Mode Metamaterial Light Source. Physical Review Letters, 2012, 109, 217401.	7.8	68
297	Special issue on switchable and reconfigurable metamaterials. Journal of Optics (United Kingdom), 2012, 14, 110201-110201.	2.2	2
298	From metamaterials to metadevices. Nature Materials, 2012, 11, 917-924.	27.5	1,769
299	Transformation optofluidics for large-angle light bending and tuning. Lab on A Chip, 2012, 12, 3785.	6.0	41
300	Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nature Communications, 2012, 3, 1274.	12.8	217
301	Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study. Nano Letters, 2012, 12, 4172-4180.	9.1	139
302	Localization of electromagnetic fields in disordered metamaterials. Physical Review B, 2012, 85, .	3.2	21
303	Low-loss terahertz superconducting plasmonics. New Journal of Physics, 2012, 14, 115006.	2.9	35
304	"Digitally―Addressable Focusing of Light into a Subwavelength Hot Spot. Nano Letters, 2012, 12, 2728-2731.	9.1	28
305	THz bandwidth optical switching with carbon nanotube metamaterial. Optics Express, 2012, 20, 6068.	3.4	45
306	Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation. Nature Communications, 2012, 3, 651.	12.8	153

#	Article	IF	Citations
307	Flux Exclusion Superconducting Quantum Metamaterial: Towards Quantum-level Switching. Scientific Reports, 2012, 2, 450.	3.3	30
308	Optical response of plasmonic relief meta-surfaces. Journal of Optics (United Kingdom), 2012, 14, 114002.	2.2	27
309	Micromachined tunable metamaterials: a review. Journal of Optics (United Kingdom), 2012, 14, 114009.	2.2	137
310	Modulating Sub-THz Radiation with Current in Superconducting Metamaterial. Physical Review Letters, 2012, 109, 243904.	7.8	85
311	A super-oscillatory lens optical microscope for subwavelength imaging. Nature Materials, 2012, 11, 432-435.	27.5	552
312	Giant nonlinear optical activity in a plasmonic metamaterial. Nature Communications, 2012, 3, 833.	12.8	182
313	Nonlinear graphene metamaterial. Applied Physics Letters, 2012, 100, .	3.3	96
314	Controlling light-with-light without nonlinearity. Light: Science and Applications, 2012, 1, e18-e18.	16.6	275
315	Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces. Physical Review B, 2012, 85, .	3.2	49
316	From Nonlinear Optics to Nonlinear Plasmonics: Giant Nonlinear Polarization Effects in Metamaterials. , 2012 , , .		0
317	Plasmon induced transparency in three dimensional metamaterial of upright magnetic meta-molecules. , 2012, , .		0
318	Electromagnetic wave analogue of an electronic diode. New Journal of Physics, 2011, 13, 033025.	2.9	111
319	Far field subwavelength focusing using optical eigenmodes. Applied Physics Letters, 2011, 98, .	3.3	65
320	Asymmetric transmission: a generic property of two-dimensional periodic patterns. Journal of Optics (United Kingdom), 2011, 13, 024006.	2.2	82
321	Reconfigurable Photonic Metamaterials. Nano Letters, 2011, 11, 2142-2144.	9.1	330
322	Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. Optics Express, 2011, 19, 12837.	3.4	95
323	Continuous metal plasmonic frequency selective surfaces. Optics Express, 2011, 19, 23279.	3.4	54
324	Femtosecond surface plasmon pulse propagation. Optics Letters, 2011, 36, 250.	3.3	41

#	Article	IF	Citations
325	A Roadmap for Metamaterials. Optics and Photonics News, 2011, 22, 30.	0.5	96
326	Angular electromagnetic response of double-ring metamaterials for TE polarization. Journal of Physics: Conference Series, 2011, 276, 012086.	0.4	0
327	Toroidal and magnetic spectral responses of four split-ring resonators. , 2011, , .		0
328	A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Splitâ€Ring Resonators. Advanced Functional Materials, 2011, 21, 3589-3594.	14.9	170
329	Nanostructured Plasmonic Medium for Terahertz Bandwidth Allâ€Optical Switching. Advanced Materials, 2011, 23, 5540-5544.	21.0	169
330	Coherent Control of Nanoscale Light Localization in Metamaterial: Creating and Positioning Isolated Subwavelength Energy Hot Spots. Physical Review Letters, 2011, 106, 085501.	7.8	74
331	Negative index in chiral metamaterials. , 2011, , .		2
332	Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength. Applied Physics Letters, 2011, 99, .	3.3	63
333	Functional photonic metamaterials., 2011,,.		0
334	Light localization in disordered metamaterials. , 2011, , .		0
335	A combinatorial approach to metamaterials discovery. Journal of Optics (United Kingdom), 2011, 13, 055102.	2.2	38
336	Demonstrating elusive toroidal dipolar response in metamaterials., 2011,,.		0
337	Plasmonic Toroidal Response of four U-shaped resonant rings at Optical Frequencies. , 2011, , .		0
338	The Road Ahead for Metamaterials. Science, 2010, 328, 582-583.	12.6	581
339	Chalcogenide glasses in active plasmonics. Physica Status Solidi - Rapid Research Letters, 2010, 4, 274-276.	2.4	53
340	Multifold Enhancement of Quantum Dot Luminescence in Plasmonic Metamaterials. Physical Review Letters, 2010, 105, 227403.	7.8	224
341	OB2.1 Investigation of increased surgical site infections among orthopaedic and ophthalmology patients. Journal of Hospital Infection, 2010, 76, S8-S9.	2.9	0
342	Active plasmonics: current status. Laser and Photonics Reviews, 2010, 4, 562-567.	8.7	165

#	Article	IF	CITATIONS
343	A novel 3D nanolens for sub-wavelength focusing by self-aligned nanolithography. Microelectronic Engineering, 2010, 87, 1506-1508.	2.4	6
344	The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9, 707-715.	27.5	3,352
345	A 7-nm light pen makes its mark. Nature Nanotechnology, 2010, 5, 10-11.	31.5	12
346	Metamaterial electro-optic switch of nanoscale thickness. Applied Physics Letters, 2010, 96, .	3.3	287
347	Metamaterial as a controllable template for nanoscale field localization. Applied Physics Letters, 2010, 96, .	3.3	15
348	Tuneable electron-beam-driven nanoscale light source. Journal of Optics (United Kingdom), 2010, 12, 024012.	2.2	20
349	Superconducting plasmonics and extraordinary transmission. Applied Physics Letters, 2010, 97, .	3 . 3	68
350	Carbon Nanotubes in a Photonic Metamaterial. Physical Review Letters, 2010, 104, 153902.	7.8	122
351	Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed. Nano Letters, 2010, 10, 3250-3252.	9.1	38
352	Toroidal Dipolar Response in a Metamaterial. Science, 2010, 330, 1510-1512.	12.6	651
353	Graphene in a photonic metamaterial. Optics Express, 2010, 18, 8353.	3.4	214
354	Cathodo- and photoluminescence in Yb^3+-Er^3+ co-doped PbF_2 nanoparticles. Optics Express, 2010, 18, 8836.	3.4	26
355	Temperature control of Fano resonances and transmission in superconducting metamaterials. Optics Express, 2010, 18, 9015.	3.4	128
356	Highly tunable optical activity in planar achiral terahertz metamaterials. Optics Express, 2010, 18, 13425.	3.4	160
357	Spectral Collapse in Ensembles of Metamolecules. Physical Review Letters, 2010, 104, 223901.	7.8	166
358	Nanoscale electron-beam-driven metamaterial light sources. , 2010, , .		2
359	Giant nonlinear optical activity in chiral metamaterials. , 2010, , .		0
360	Metamaterial Optical Diodes for Linearly and Circularly Polarized Light. , 2010, , .		1

#	Article	lF	Citations
361	Switchable and Nonlinear Metamaterials: Controlling Light on the Nanoscale. , 2010, , .		О
362	Carbon Nanotubes in a Photonic Metamaterial: Giant Ultrafast Nonlinearity through Plasmon-Exciton Coupling. , 2010 , , .		1
363	Tunable, Nanoscale Free-electron source of photons and plasmons. , 2009, , .		0
364	Coherent and incoherent metamaterials and order-disorder transitions. Physical Review B, 2009, 80, .	3.2	98
365	Metamaterial analogue of the Mössbauer effect. , 2009, , .		0
366	Superresolution without evanescent fields. , 2009, , .		1
367	Propagation and active control of femtosecond plasmon pulses. , 2009, , .		0
368	Fractional Talbot effect in a dielectric micro-spheres array. , 2009, , .		0
369	Extrinsic electromagnetic chirality in metamaterials. Journal of Optics, 2009, 11, 074009.	1.5	166
370	Artifical chiral materials. Journal of Optics, 2009, 11, 070201.	1.5	11
371	Holographically encoded microparticles for bead-based assays. Journal Physics D: Applied Physics, 2009, 42, 055507.	2.8	4
372	Towards Femtojoule Nanoparticle Phase-Change Memory. Japanese Journal of Applied Physics, 2009, 48, 03A065.	1.5	15
373	The next photonic revolution. Journal of Optics, 2009, 11, 110202.	1.5	4
374	Femtosecond active plasmonics: ultrafast control of surface plasmon propagation. Journal of Optics, 2009, 11, 114031.	1.5	24
375	Analysis of polarization transformations by a planar chiral array of complex-shaped particles. Journal of Optics, 2009, 11, 074002.	1.5	30
376	Ultrafast active plasmonics. Nature Photonics, 2009, 3, 55-58.	31.4	785
377	Electron beam lithography for high density meta fish scale operational at optical frequency. Microelectronic Engineering, 2009, 86, 1081-1084.	2.4	8
378	Light Well: A Tunable Free-Electron Light Source on a Chip. Physical Review Letters, 2009, 103, 113901.	7.8	151

#	Article	lF	Citations
379	Super-Resolution without Evanescent Waves. Nano Letters, 2009, 9, 1249-1254.	9.1	285
380	Metamaterial-Induced Transparency: Sharp Fano Resonances and Slow Light. Optics and Photonics News, 2009, 20, 22.	0.5	129
381	Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Optics Express, 2009, 17, 8548.	3.4	197
382	Planar metamaterial with transmission and reflection that depend on the direction of incidence. Applied Physics Letters, 2009, 94, .	3.3	151
383	Metamaterial with negative index due to chirality. Physical Review B, 2009, 79, .	3.2	683
384	Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Applied Physics Letters, 2009, 94, 211902.	3.3	265
385	Metamaterials: Optical Activity without Chirality. Physical Review Letters, 2009, 102, 113902.	7.8	483
386	Active plasmonics: Current status. , 2009, , .		2
387	Gyrotropy of a Metamolecule: Wire on a Torus. Physical Review Letters, 2009, 103, 093901.	7.8	91
388	Terahertz metamaterial with asymmetric transmission. Physical Review B, 2009, 80, .	3.2	319
389	Trapped-Mode Resonances in Planar Metamaterials with High Structural Symmetry. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 201-208.	0.3	5
390	Optical Activity in Achiral Metamaterials. , 2009, , .		0
391	Coherent Metamaterials from "Optical Ferromagnetism―to the Lasing Spaser. , 2009, , .		0
392	Superimposed nanostructured diffraction gratings as high capacity barcodes for biological and chemical applications. Optics Communications, 2008, 281, 1789-1795.	2.1	9
393	Nanohole Array as a Lens. Nano Letters, 2008, 8, 2469-2472.	9.1	153
394	What diffraction limit?. Nature Materials, 2008, 7, 420-422.	27. 5	146
395	Lasing spaser. Nature Photonics, 2008, 2, 351-354.	31.4	662
396	Metamaterial Analog of Electromagnetically Induced Transparency. Physical Review Letters, 2008, 101, 253903.	7.8	760

#	Article	IF	CITATIONS
397	Nanostructured Metal Film with Asymmetric Optical Transmission. Nano Letters, 2008, 8, 2940-2943.	9.1	213
398	Diffractive Micro Bar Codes for Encoding of Biomolecules in Multiplexed Assays. Analytical Chemistry, 2008, 80, 1902-1909.	6.5	32
399	Luminescence readout of nanoparticle phase state. Applied Physics Letters, 2008, 92, .	3.3	8
400	Optical activity in extrinsically chiral metamaterial. Applied Physics Letters, 2008, 93, .	3.3	239
401	Slow Light in "Zero Thickness―Metamaterials. , 2008, , .		0
402	Phase-change memory functionality in gallium nanoparticles., 2007,,.		1
403	Optical metamaterials based on thin metal films: from negative index of refraction to enhanced transmission and to surface wave guidance. Proceedings of SPIE, 2007, 6638, 33.	0.8	0
404	Giant optical gyrotropy due to electromagnetic coupling. Applied Physics Letters, 2007, 90, 223113.	3.3	283
405	Resetting single nanoparticle structural phase with nanosecond pulses. Applied Physics Letters, 2007, 91, .	3.3	9
406	All-Optical Phase-Change Memory in a Single Gallium Nanoparticle. Physical Review Letters, 2007, 98, 153905.	7.8	84
407	Enhanced microwave transmission through quasicrystal hole arrays. Applied Physics Letters, 2007, 91, 081503.	3.3	38
408	Hyperspectral imaging of plasmonic excitations induced by an Electron Beam., 2007,,.		0
409	Achieving sharp resonances in metamaterials via engaging "closed-modes". , 2007, , .		0
410	Metamaterials with Giant Optical Activity., 2007,,.		0
411	The magical land between the kingdoms of Nano and Meta. Journal of Optics, 2007, 9, .	1.5	2
412	On the possibility of gain control and special solitons in metamaterials. Proceedings of SPIE, 2007, , .	0.8	3
413	Dye doped porous silica as an all solid state device for random lasing. Proceedings of SPIE, 2007, , .	0.8	0
414	Organic electro-optic/silicon photonic materials and devices. Proceedings of SPIE, 2007, , .	0.8	1

#	Article	IF	Citations
415	Effect of interchain interaction on linear optical properties of poly(thienylenevinylene). Proceedings of SPIE, 2007, , .	0.8	0
416	Electrically controlled Bragg resonances of an ambichiral electro-optic structure: oblique incidence. , $2007, , .$		1
417	Optical properties of metamaterials based on porous channel photonic structures and applications for optical devices. Proceedings of SPIE, 2007, , .	0.8	0
418	Limits of luminescence efficiency enhancement by surface plasmon polaritons., 2007,,.		2
419	Fabrication and applications of negative refractive index matermaterials with chiral properties. Proceedings of SPIE, 2007, , .	0.8	0
420	Slow light in negative-index waveguide-heterostructures. Proceedings of SPIE, 2007, , .	0.8	0
421	Swamping of circular Bragg phenomenon revealed by durations and average speeds of videopulses transmitted through chiral sculptured thin films. Proceedings of SPIE, 2007, , .	0.8	0
422	Characterization and excitation of a nano-scaled plasmonic coupler with co-directional phase and contra-directional power flow. , 2007, , .		0
423	Two-dimensional plasmonic metamaterials. , 2007, , .		2
424	Semiclassical theory of hyperlensing and cloaking. , 2007, , .		0
425	Optical hyperlens: far-field imaging beyond the diffraction limit. Proceedings of SPIE, 2007, , .	0.8	4
426	Light pressure on chiral sculptured thin films. , 2007, , .		0
427	Photon tunneling at material boundary by positive permeability metamaterials., 2007,,.		1
428	En route to low loss nanoplasmonics: elongating surface plasmon propagating length without gain. , 2007, , .		0
429	The effects of dispersion, diffraction, and nonlinearity management in negative index materials. Proceedings of SPIE, 2007, , .	0.8	0
430	Mean field theory of metallo-dielectric photonic crystals with magnetic components: the long-wavelength limit. Proceedings of SPIE, 2007, , .	0.8	2
431	Diffraction and dispersion management in active nanostructured metamaterials. , 2007, , .		0
432	Optical magnetic mirrors. Journal of Optics, 2007, 9, L1-L2.	1.5	90

#	Article	IF	CITATIONS
433	The plasmon Talbot effect. Optics Express, 2007, 15, 9692.	3.4	115
434	Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution. Optics Express, 2007, 15, 11313.	3.4	59
435	Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures. Nano Letters, 2007, 7, 1996-1999.	9.1	285
436	Planar Chiral Metamatertals. , 2007, , .		0
437	Fabrication of diffraction-encoded micro-particles using nano-imprint lithography. Journal of Micromechanics and Microengineering, 2007, 17, S116-S121.	2.6	16
438	Fabrication of plasmonic waveguides for device applications. , 2007, , .		3
439	Light confinement at interfaces and Talbot effect using optical surface modes. , 2007, , .		0
440	Toroidal metamaterial. New Journal of Physics, 2007, 9, 324-324.	2.9	155
441	Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry. Physical Review Letters, 2007, 99, 147401.	7.8	1,008
442	Focusing of light by a nanohole array. Applied Physics Letters, 2007, 90, 091119.	3.3	176
442	Focusing of light by a nanohole array. Applied Physics Letters, 2007, 90, 091119. Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288.	3.3 1.5	116
443	Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288. On the aromagnetism and anapole moment of anthracene nanocrystals. New Journal of Physics, 2007,	1.5	116
443	Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288. On the aromagnetism and anapole moment of anthracene nanocrystals. New Journal of Physics, 2007, 9, 95-95.	1.5	116 26
444 444 445	Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288. On the aromagnetism and anapole moment of anthracene nanocrystals. New Journal of Physics, 2007, 9, 95-95. Active plasmonics., 2007, 109-139. Optical modulation of surface plasmon-polariton coupling in a gallium/aluminium composite. Optics	2.9	116 26 3
443 444 445 446	Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288. On the aromagnetism and anapole moment of anthracene nanocrystals. New Journal of Physics, 2007, 9, 95-95. Active plasmonics., 2007, , 109-139. Optical modulation of surface plasmon-polariton coupling in a gallium/aluminium composite. Optics Communications, 2007, 278, 207-210.	2.9 2.1	116 26 3 20
444 445 446 447	Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288. On the aromagnetism and anapole moment of anthracene nanocrystals. New Journal of Physics, 2007, 9, 95-95. Active plasmonics. , 2007, , 109-139. Optical modulation of surface plasmon-polariton coupling in a gallium/aluminium composite. Optics Communications, 2007, 278, 207-210. All change, please. Nature Photonics, 2007, 1, 551-553.	2.9 2.1 31.4	116 26 3 20 23

#	Article	IF	Citations
451	Equilibrium geometries and electronic structure calculations of divalent lead Pb(II) complexes with paramagnetic organic ligands. Proceedings of SPIE, 2007 , , .	0.8	О
452	Harmonic Passive Mode-Locking of a Single-Frequency Semiconductor Laser Submitted to Nonlinear Optical Feedback. IEEE Journal of Quantum Electronics, 2006, 42, 1185-1195.	1.9	1
453	Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure. Physical Review Letters, 2006, 97, 177401.	7.8	531
454	Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure. Physical Review Letters, 2006, 97, 167401.	7.8	675
455	High capacity tagging using nanostructured diffraction barcodes. Optics Express, 2006, 14, 1382.	3.4	14
456	Polymorphic nanoparticles as all-optical memory elements. Optics Express, 2006, 14, 10652.	3.4	11
457	Generation of Traveling Surface Plasmon Waves by Free-Electron Impact. Nano Letters, 2006, 6, 1113-1115.	9.1	114
458	Micro- and nanolithography for photonic meta-materials and photonic nanostructures. , 2006, , .		0
459	Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures. Applied Physics B: Lasers and Optics, 2006, 84, 97-101.	2.2	17
460	Controlling light with light via structural transformations in metallic nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 371-376.	2.9	8
461	Single nanoparticle as photonic switch and optical memory element. Journal of Optics, 2006, 8, S1-S8.	1.5	36
462	Extraordinary properties of light transmission through a small chiral hole in a metallic screen. Journal of Optics, 2006, 8, S98-S105.	1.5	23
463	Nanophotonics under a scanning electron microscope: Studying resonator-less all-optical switching and memory functionality in gallium nanoparticles. , 2006, , .		0
464	Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics. Applied Physics Letters, 2006, 89, 031118.	3.3	33
465	Gallium/aluminium nano-composite for nonlinear-optical and plasmonic switching applications. , 2006, , .		1
466	Nano metamaterials and photonic gratings by nanoimprint and hot embossing. , 2006, , .		1
467	Mirror that does not change the phase of reflected waves. Applied Physics Letters, 2006, 88, 091119.	3.3	80
468	Optical magnetic mirror., 2006,,.		1

#	Article	IF	Citations
469	Resonator-Less Optical Memory in Nanoparticles. , 2006, , .		O
470	Photonic planar meta-materials: spectral selectivity, "invisible metalsâ€; magnetic mirrors and asymmetric transmission. , 2006, , .		0
471	Magnetic Mirror on Optical Frequency. , 2006, , .		0
472	Chapter 4 Active plasmonics. Advances in Nano-optics and Nano-photonics, 2006, , 109-139.	0.0	0
473	Breeding new science by coupling photons with `nano'. Journal of Optics, 2006, 8, .	1.5	0
474	Spectral analysis of periodically nanostructured metal surfaces. , 2005, , .		0
475	Optical switching at ZnSe–Ga interfaces via nanoscale light-induced metallisation. Optics Communications, 2005, 254, 340-343.	2.1	5
476	Near-field polarization conversion in planar chiral nanostructures. Optics Communications, 2005, 255, 91-96.	2.1	11
477	Nanoimprint lithography for planar chiral photonic meta-materials. Microelectronic Engineering, 2005, 78-79, 612-617.	2.4	41
478	Nanostructures + Light = â€~New Optics'. Journal of Optics, 2005, 7, S1-S1.	1.5	4
479	Structural phase transition as the mechanism of an optical nonlinearity in a nanoparticle film. Journal of Optics, 2005, 7, S241-S243.	1.5	2
480	'Miracle' mirror that does not change the phase of reflected wave., 2005,,.		0
481	Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling. Physical Review E, 2005, 72, 036603.	2.1	40
482	Nonlinear optics of nanoscale structural transformations. , 2005, , .		0
483	Light-Induced Switching between Structural Forms with Different Optical Properties in a Single Gallium Nanoparticulate. Nano Letters, 2005, 5, 2104-2107.	9.1	57
484	Optical whirlpool on an absorbing metallic nanoparticle. Optics Express, 2005, 13, 8372.	3.4	103
485	Active control of surface plasmon–polariton waves. Journal of Optics, 2005, 7, S85-S89.	1.5	59
486	Polarization effects in the diffraction of light by a planar chiral structure. Physical Review E, 2005, 71, 037603.	2.1	68

#	Article	IF	Citations
487	Polarization conversion and "focusing―of light propagating through a small chiral hole in a metallic screen. Applied Physics Letters, 2005, 86, 201105.	3.3	41
488	Planar electromagnetic metamaterial with a fish scale structure. Physical Review E, 2005, 72, 056613.	2.1	97
489	A new model of geometric chirality for two-dimensional continuous media and planar meta-materials. Journal of Optics, 2004, 6, 193-203.	1.5	32
490	Wavelength dependent birefringence of surface plasmon polaritonic crystals. Physical Review B, 2004, 70, .	3.2	45
491	Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation. Physical Review Letters, 2004, 92, 145702.	7.8	51
492	Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Applied Physics Letters, 2004, 84, 1416-1418.	3.3	242
493	High-contrast modulation of light with light by control of surface plasmon polariton wave coupling. Applied Physics Letters, 2004, 85, 3369-3371.	3.3	74
494	Pulse operation of semiconductor laser with nonlinear optical feedback. , 2004, , .		0
495	Phase matched second harmonic generation from nanostructured metallic surfaces. Journal of Optics, 2004, 6, 26-28.	1.5	60
496	Optical properties of closely packed nanoparticle films: spheroids and nanoshells. Journal of Optics, 2004, 6, 155-160.	1.5	52
497	Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film. Optics Letters, 2004, 29, 1414.	3.3	101
498	Polarization dependencies of the enhanced optical transmission through surface polaritonic crystals., 2004, 5554, 197.		0
499	Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation. Europhysics Letters, 2004, 67, 614-619.	2.0	21
500	Nanophotonics of structural transformations. , 2004, , .		0
501	Planar chiral meta-materials for optical applications. Microelectronic Engineering, 2004, 73-74, 367-371.	2.4	0
502	Planar chiral meta-materials for photonic devices. Journal of Materials Science: Materials in Electronics, 2003, 14, 393-395.	2.2	10
503	Optical Manifestations of Planar Chirality. Physical Review Letters, 2003, 90, 107404.	7.8	445
504	Optical nonlinearity resulting from a light-induced structural transition in gallium nanoparticles. Applied Physics Letters, 2003, 82, 1087-1089.	3.3	44

#	Article	IF	CITATIONS
505	Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures. Physical Review Letters, 2003, 91, 247404.	7.8	116
506	Oscillating bubbles at the tips of optical fibers in liquid nitrogen. Physical Review E, 2003, 68, 027301.	2.1	9
507	Light-controlled growth of gallium nanoparticles. Journal of Applied Physics, 2003, 93, 3540-3544.	2.5	27
508	Photoconductivity in confined gallium. Applied Physics Letters, 2002, 80, 1297-1299.	3.3	10
509	Nonlinear optics on the nanoscale. Contemporary Physics, 2002, 43, 365-377.	1.8	47
510	Optical control of gallium nanoparticle growth. Applied Physics Letters, 2002, 80, 1643-1645.	3.3	80
511	<title>Layered chiral metallic meta-materials</title> ., 2002, , .		3
512	Optical Properties of Planar Chiral Meta-Materials. Materials Research Society Symposia Proceedings, 2002, 722, 1031.	0.1	4
513	Nanoscale photonics of structural transformations in gallium. , 2002, 4809, 1.		0
514	Light-induced reflectivity switching in gallium-on-silica films in the blue–green spectral region. Optics Communications, 2002, 214, 271-276.	2.1	2
515	Quasi-hexagonal self-organization of nanoparticles upon the laser-controlled deposition of Ga atoms. JETP Letters, 2002, 76, 112-114.	1.4	4
516	Layered chiral metallic microstructures with inductive coupling. Applied Physics Letters, 2001, 78, 498-500.	3.3	142
517	Dynamics of light-induced reflectivity switching in gallium films deposited on silica by pulsed laser ablation. Optics Letters, 2001, 26, 441.	3.3	26
518	Dynamics of light-induced reflectivity switching in gallium films deposited on silica by pulsed laser ablation: $\hat{a} \in f$ errata. Optics Letters, 2001, 26, 852.	3.3	2
519	Light-induced metallization in laser-deposited gallium films. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 331.	2.1	28
520	Nanosecond dynamics of a gallium mirror's light-induced reflectivity change. Physical Review B, 2001, 63, .	3.2	23
521	Structural phase transition as a mechanism for broadband, low-threshold reflectivity switching in gallium. Applied Physics Letters, 2001, 79, 2375-2377.	3.3	18
522	Light-induced metallization at the gallium-silica interface. Physical Review B, 2001, 64, .	3.2	12

#	Article	IF	CITATIONS
523	Polarization Effects in Lasers, Spectroscopy and Optoelectronics, PELS 2000. Journal of Optics B: Quantum and Semiclassical Optics, 2001, 3, .	1.4	2
524	The light-induced structural phase transition in confining gallium and its photonic applications. Journal of Luminescence, 2000, 87-89, 646-648.	3.1	2
525	Gigantic Reflectance Anisotropy of the [110] Face of Cubic ZnSe in the Excitonic Part of the Spectrum. Journal of the Physical Society of Japan, 2000, 69, 3458-3461.	1.6	1
526	Light-induced specular-reflectivity suppression at a gallium/silica interface. Optics Letters, 2000, 25, 1594.	3.3	4
527	Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror. Optics Communications, 1999, 166, 239-243.	2.1	11
528	Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror. Applied Physics Letters, 1999, 74, 3619-3621.	3.3	49
529	Cross-wavelength all-optical switching using nonlinearity of liquefying gallium. Optics Express, 1999, 5, 157.	3.4	11
530	Femtosecond cubic optical nonlinearity of thin nickel films. Optics Letters, 1999, 24, 1373.	3.3	19
531	Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel. Optics Communications, 1998, 147, 148-152.	2.1	8
532	Cubic optical nonlinearities of metals in the vicinity of the melting point. Journal of Modern Optics, 1998, 45, 1009-1018.	1.3	1
533	Optical detection of crystallographic domains in zinc-blende crystals. Applied Physics Letters, 1998, 73, 1511-1513.	3.3	3
534	A photonic switch based on a gigantic, reversible optical nonlinearity of liquefying gallium. Applied Physics Letters, 1998, 73, 1787-1789.	3.3	51
535	Light-Induced Structural Phase Transition in Confining Gallium and Associated Gigantic Optical Nonlinearity. Materials Research Society Symposia Proceedings, 1998, 543, 275.	0.1	0
536	Cubic optical nonlinearities of metals in the vicinity of the melting point. Journal of Modern Optics, 1998, 45, 1009-1018.	1.3	1
537	Femtosecond optical nonlinearity of metallic indium across the solid–liquid transition. Optics Letters, 1997, 22, 1879.	3.3	12
538	Direct measurement of carrier spin relaxation times in opaque solids using the specular inverse Faraday effect. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 234, 379-383.	2.1	13
539	Nonreciprocity of natural rotatory power. Optics Letters, 1996, 21, 1955.	3.3	5
540	Reciprocity in nonlocal optics. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 1641.	2.1	11

#	Article	IF	CITATIONS
541	Pump–probe reflective polarization-sensitive nonlinear optics. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 2729.	2.1	18
542	Ultrafast Nonlinearity of Metallic Indium Across the Liquid-Solid Transition. Springer Series in Chemical Physics, 1996, , 461-462.	0.2	2
543	Reply to â€~â€~Comment on â€~Observation of time-nonreversible optical interaction with zinc-blende semiconductors' ''. Physical Review B, 1995, 52, 2203-2205.	3.2	7
544	Specular nonlinear anisotropic polarization effect along fourfold crystal symmetry axes. Optics Letters, 1995, 20, 356.	3.3	5
545	Cubic optical nonlinearity of free electrons in bulk gold. Optics Letters, 1995, 20, 1368.	3.3	38
546	Reversality of optical interactions in noncentrosymmetric media. Optics Letters, 1995, 20, 1809.	3.3	16
547	Propagation of partially polarized light. Physical Review A, 1994, 50, 709-713.	2.5	10
548	Observation of time-nonreversible optical interaction with zinc-blende semiconductors. Physical Review B, 1994, 50, 11508-11513.	3.2	21
549	Time non-invariant linear birefringence and dichroism due to spin—orbit interaction. Chemical Physics Letters, 1994, 217, 249-253.	2.6	17
550	Giant specular inverse Faraday effect in Cd0.6Mn0.4Te. Solid State Communications, 1994, 89, 823-825.	1.9	35
551	Coherent and incoherent specular inverse Faraday effect in YBa2Cu3O7–δ. Solid State Communications, 1994, 90, 287-289.	1.9	4
552	Specular optical activity and specular gyrotropic linear dichroism in semiconductors. Journal of Luminescence, 1994, 60-61, 36-39.	3.1	3
553	Transient optical excitation breaks time-reversibility in GaAs and InSb crystals. Journal of Luminescence, 1994, 58, 244-247.	3.1	4
554	A new principle of optical diagnostics of broken time reversibility in solids using unpolarized light. Journal of Luminescence, 1994, 58, 399-402.	3.1	2
555	Coherent and incoherent specular inverse Faraday effect: χ^(3) measurements in opaque materials. Optics Letters, 1994, 19, 13.	3.3	30
556	Coherent and incoherent pump-probe specular inverse Faraday effect in media with instantaneous nonlinearity. Journal of the Optical Society of America B: Optical Physics, 1994, 11, 1388.	2.1	15
557	Reflective optical activity. Faraday Discussions, 1994, 99, 359.	3.2	17
558	Transient Reflective-Polarization Spectroscopy of Hidden Anisotropy in Cubic Crystals. Springer Series in Chemical Physics, 1994, , 393-394.	0.2	0

#	Article	IF	CITATIONS
559	Specular optical activity in GaAs. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 174, 335-338.	2.1	18
560	Specular optical activity in α-HgS. Thin Solid Films, 1993, 234, 545-548.	1.8	0
561	Equivalency of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical activity on reflection. Physical Review B, 1993, 47, 11730-11735.	3.2	37
562	Broken symmetry of the kinetic coefficients and specular polarization phenomena. Physical Review B, 1993, 47, 16141-16147.	3.2	16
563	Experimental observation of specular optical activity. Physical Review Letters, 1993, 70, 3039-3042.	7.8	41
564	<title>Thermal nonlinearities and polarization switch in the gyrotropic isoindex crystals</title> ., 1992,,.		0
565	<title>Nonlinear frequency converters as sources and detectors of polarized light with linear polarization degree of 10-9</title> ., 1992,,.		1
566	Investigation of the characteristics of an RAC-n-UP laser. Soviet Journal of Quantum Electronics, 1991, 21, 656-659.	0.1	0
567	Intensity-activated birefringence zero-crossing shift in CuAlSe_2 crystal. Optics Letters, 1990, 15, 993.	3.3	6
568	Polarization Instability in Crystals with Nonlinear Anisotropy and Nonlinear Gyrotropy., 1990,, 253-264.		0
569	Polarization instability and multistability in nonlinear optics. Uspekhi Fizicheskikh Nauk, 1989, 32, 357-375.	0.3	40
570	Tunable picosecond and femtosecond sources of quasi-cw laser radiation based on fiber-optic converters. Soviet Journal of Quantum Electronics, 1989, 19, 424-426.	0.1	1
571	Isogyration birefringent filter. Soviet Journal of Quantum Electronics, 1989, 19, 993-994.	0.1	1
572	Intensity dependence of thermal nonlinear optical activity in crystals. Applied Physics B, Photophysics and Laser Chemistry, 1989, 49, 65-67.	1.5	4
573	GaAs â€~giant' modulation of polarization of ps-light pulses under suppression of exciton resonance. Optical and Quantum Electronics, 1988, 20, 30-33.	3.3	1
574	Light by light modulation in semiconductor doped glass. Optical and Quantum Electronics, 1988, 20, 119-123.	3.3	5
575	Intensity-dependent change of polarization of light normally reflected from a ã€^100〉 GaAs surface (nonlinear-optical activity on reflection). Optics Letters, 1988, 13, 640.	3.3	6
576	Stabilization, effective compression, and control of the parameters of picosecond pulses in a fiber-optic compressor with a nonlinear crystal. Soviet Journal of Quantum Electronics, 1988, 18, 243-245.	0.1	1

#	Article	IF	Citations
577	LIGHT BY LIGHT MODULATION AND SUBHARMONIC GENERATION IN SEMICONDUCTORDOPED GLASS. Journal De Physique Colloque, 1988, 49, C2-377-C2-380.	0.2	1
578	Generation and Amplification of Subharmonics in Semiconductor-doped Glass by a Modulated Argon-ion Laser. Journal of Modern Optics, 1987, 34, 1257-1262.	1.3	7
579	Second harmonic generators as a new class of light polarizers and analyzers. Soviet Journal of Quantum Electronics, 1987, 17, 948-952.	0.1	5
580	Second harmonic generation as a method for polarizing and analyzing laser light. Applied Physics B, Photophysics and Laser Chemistry, 1987, 42, 115-119.	1.5	6
581	Generation of deformation waves in the processes of photoexcitation and recombination of nonequilibrium carriers in silicon. Applied Physics A: Solids and Surfaces, 1986, 40, 163-166.	1.4	28
582	On Broadening of Excitonic Molecule State under the Giant Two-Photon Excitation in CuCl. Journal of the Physical Society of Japan, 1985, 54, 2778-2778.	1.6	1
583	Nonlinear polarization spectroscopy of ions interaction potential in alkali halide crystals. Solid State Communications, 1985, 55, 713-715.	1.9	8
584	Efficient nonlinear optical converters made of potassium titanyl phosphate crystals. Soviet Journal of Quantum Electronics, 1985, 15, 885-886.	0.1	26
585	Nonlinear polarization spectroscopy in GaAs crystals: one- and two-photon resonances, excitonic effects, and the saturation of nonlinear susceptibilities. Journal of the Optical Society of America B: Optical Physics, 1985, 2, 1174.	2.1	15
586	Physical Mechanisms of Nonlinear Optical Activity in Crystals. Optica Acta, 1984, 31, 1177-1184.	0.7	15
587	Amplitude and polarization instability of picosecond light pulses exciting a semiconductor optical resonator: erratum. Optics Letters, 1984, 9, 192.	3.3	0
588	Amplitude and polarization instability of picosecond light pulses exciting a semiconductor optical resonator. Optics Letters, 1983, 8, 557.	3.3	5
589	Instability of the amplitude and polarization of ultrashort light pulses exciting a semiconductor optical resonator. Soviet Journal of Quantum Electronics, 1983, 13, 843-844.	0.1	3
590	Nonlinear optical activity in a gallium arsenide crystal. Soviet Journal of Quantum Electronics, 1981, 11, 54-57.	0.1	2
591	Self-induced optical activity in crystals. Optics Communications, 1980, 35, 92-95.	2.1	23
592	Investigation of magnetooptic effects near molecular vibrational resonances using optical parametric oscillators. Soviet Journal of Quantum Electronics, 1979, 9, 202-204.	0.1	0
593	Ga-Al and Ga-Ag nano-structured films for active plasmonics applications. , 0, , .		1
594	Chirality and anisotropy of planar metamaterials., 0,, 94-157.		6