Ute Häussler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287934/publications.pdf

Version: 2024-02-01

25 papers 1,877 citations

430874 18 h-index 25 g-index

29 all docs

29 docs citations

29 times ranked 2887 citing authors

#	Article	IF	CITATIONS
1	Mossy fiber sprouting into the hippocampal region <scp>CA2</scp> in patients with temporal lobe epilepsy. Hippocampus, 2021, 31, 580-592.	1.9	18
2	Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. ELife, 2020, 9, .	6.0	40
3	Expression of brainâ€derived neurotrophic factor and structural plasticity in the dentate gyrus and <scp>CA</scp> 2 region correlate with epileptiform activity. Epilepsia, 2019, 60, 1234-1247.	5.1	18
4	Bursts with High and Low Load of Epileptiform Spikes Show Context-Dependent Correlations in Epileptic Mice. ENeuro, 2019, 6, ENEURO.0299-18.2019.	1.9	13
5	Theta frequency decreases throughout the hippocampal formation in a focal epilepsy model. Hippocampus, 2018, 28, 375-391.	1.9	20
6	Synaptic Remodeling of Entorhinal Input Contributes to an Aberrant Hippocampal Network in Temporal Lobe Epilepsy. Cerebral Cortex, 2017, 27, 2348-2364.	2.9	50
7	Neurogenic Processes Are Induced by Very Short Periods of Voluntary Wheel-Running in Male Mice. Frontiers in Neuroscience, 2017, 11, 385.	2.8	9
8	Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy. ELife, 2017, 6, .	6.0	41
9	Mossy fiber sprouting and pyramidal cell dispersion in the hippocampal <scp>CA2</scp> region in a mouse model of temporal lobe epilepsy. Hippocampus, 2016, 26, 577-588.	1.9	59
10	Identification of a New Genomic Hot Spot of Evolutionary Diversification of Protein Function. PLoS ONE, 2015, 10, e0125413.	2.5	6
11	Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain, 2015, 138, 1208-1222.	7.6	257
12	Epilepsy-Induced Motility of Differentiated Neurons. Cerebral Cortex, 2014, 24, 2130-2140.	2.9	44
13	Changes in neural network homeostasis trigger neuropsychiatric symptoms. Journal of Clinical Investigation, 2014, 124, 696-711.	8.2	81
14	Disorganization of neocortical lamination in focal cortical dysplasia is brain-region dependent: evidence from layer-specific marker expression. Acta Neuropathologica Communications, 2013, 1, 47.	5.2	20
15	GABA _B autoreceptor-mediated cell type-specific reduction of inhibition in epileptic mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15073-15078.	7.1	44
16	Differential vulnerability of interneurons in the epileptic hippocampus. Frontiers in Cellular Neuroscience, 2013, 7, 167.	3.7	78
17	Septotemporal Position in the Hippocampal Formation Determines Epileptic and Neurogenic Activity in Temporal Lobe Epilepsy. Cerebral Cortex, 2012, 22, 26-36.	2.9	81
18	Experimental epilepsy affects <scp>N</scp> otch1 signalling and the stem cell pool in the dentate gyrus. European Journal of Neuroscience, 2012, 36, 3643-3652.	2.6	21

Ute Hässler

#	Article	IF	CITATION
19	Altered theta coupling between medial entorhinal cortex and dentate gyrus in temporal lobe epilepsy. Epilepsia, 2012, 53, 1937-1947.	5.1	29
20	CNTF-mediated preactivation of astrocytes attenuates neuronal damage and epileptiform activity in experimental epilepsy. Experimental Neurology, 2012, 236, 141-150.	4.1	22
21	Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiology of Disease, 2011, 42, 35-47.	4.4	169
22	Dentate gyrus and hilus transection blocks seizure propagation and granule cell dispersion in a mouse model for mesial temporal lobe epilepsy. Hippocampus, 2011, 21, 334-343.	1.9	43
23	Quiescent and Active Hippocampal Neural Stem Cells with Distinct Morphologies Respond Selectively to Physiological and Pathological Stimuli and Aging. Cell Stem Cell, 2010, 6, 445-456.	11.1	620
24	Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Experimental Neurology, 2009, 216, 390-397.	4.1	51
25	Short-term changes in bilateral hippocampal coherence precede epileptiform events. Neurolmage, 2007, 38, 138-149.	4.2	41