Ute Häussler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287934/publications.pdf Version: 2024-02-01

LITE HÃUSSIED

#	Article	IF	CITATIONS
1	Quiescent and Active Hippocampal Neural Stem Cells with Distinct Morphologies Respond Selectively to Physiological and Pathological Stimuli and Aging. Cell Stem Cell, 2010, 6, 445-456.	11.1	620
2	Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain, 2015, 138, 1208-1222.	7.6	257
3	Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiology of Disease, 2011, 42, 35-47.	4.4	169
4	Septotemporal Position in the Hippocampal Formation Determines Epileptic and Neurogenic Activity in Temporal Lobe Epilepsy. Cerebral Cortex, 2012, 22, 26-36.	2.9	81
5	Changes in neural network homeostasis trigger neuropsychiatric symptoms. Journal of Clinical Investigation, 2014, 124, 696-711.	8.2	81
6	Differential vulnerability of interneurons in the epileptic hippocampus. Frontiers in Cellular Neuroscience, 2013, 7, 167.	3.7	78
7	Mossy fiber sprouting and pyramidal cell dispersion in the hippocampal <scp>CA2</scp> region in a mouse model of temporal lobe epilepsy. Hippocampus, 2016, 26, 577-588.	1.9	59
8	Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Experimental Neurology, 2009, 216, 390-397.	4.1	51
9	Synaptic Remodeling of Entorhinal Input Contributes to an Aberrant Hippocampal Network in Temporal Lobe Epilepsy. Cerebral Cortex, 2017, 27, 2348-2364.	2.9	50
10	GABA _B autoreceptor-mediated cell type-specific reduction of inhibition in epileptic mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15073-15078.	7.1	44
11	Epilepsy-Induced Motility of Differentiated Neurons. Cerebral Cortex, 2014, 24, 2130-2140.	2.9	44
12	Dentate gyrus and hilus transection blocks seizure propagation and granule cell dispersion in a mouse model for mesial temporal lobe epilepsy. Hippocampus, 2011, 21, 334-343.	1.9	43
13	Short-term changes in bilateral hippocampal coherence precede epileptiform events. NeuroImage, 2007, 38, 138-149.	4.2	41
14	Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy. ELife, 2017, 6, .	6.0	41
15	Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. ELife, 2020, 9, .	6.0	40
16	Altered theta coupling between medial entorhinal cortex and dentate gyrus in temporal lobe epilepsy. Epilepsia, 2012, 53, 1937-1947.	5.1	29
17	CNTF-mediated preactivation of astrocytes attenuates neuronal damage and epileptiform activity in experimental epilepsy. Experimental Neurology, 2012, 236, 141-150.	4.1	22
18	Experimental epilepsy affects <scp>N</scp> otch1 signalling and the stem cell pool in the dentate gyrus. European Journal of Neuroscience, 2012, 36, 3643-3652.	2.6	21

Ute HÃ**¤**ssler

#	Article	IF	CITATIONS
19	Disorganization of neocortical lamination in focal cortical dysplasia is brain-region dependent: evidence from layer-specific marker expression. Acta Neuropathologica Communications, 2013, 1, 47.	5.2	20
20	Theta frequency decreases throughout the hippocampal formation in a focal epilepsy model. Hippocampus, 2018, 28, 375-391.	1.9	20
21	Expression of brainâ€derived neurotrophic factor and structural plasticity in the dentate gyrus and <scp>CA</scp> 2 region correlate with epileptiform activity. Epilepsia, 2019, 60, 1234-1247.	5.1	18
22	Mossy fiber sprouting into the hippocampal region <scp>CA2</scp> in patients with temporal lobe epilepsy. Hippocampus, 2021, 31, 580-592.	1.9	18
23	Bursts with High and Low Load of Epileptiform Spikes Show Context-Dependent Correlations in Epileptic Mice. ENeuro, 2019, 6, ENEURO.0299-18.2019.	1.9	13
24	Neurogenic Processes Are Induced by Very Short Periods of Voluntary Wheel-Running in Male Mice. Frontiers in Neuroscience, 2017, 11, 385.	2.8	9
25	Identification of a New Genomic Hot Spot of Evolutionary Diversification of Protein Function. PLoS ONE, 2015, 10, e0125413.	2.5	6