Francesco Orsini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287933/publications.pdf

Version: 2024-02-01

304743 289244 1,663 53 22 40 citations h-index g-index papers 54 54 54 2815 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigating Microbial (Micro)colony Heterogeneity by Vibrational Spectroscopy. Applied and Environmental Microbiology, 2001, 67, 1461-1469.	3.1	227
2	Classification and Identification of Enterococci: a Comparative Phenotypic, Genotypic, and Vibrational Spectroscopic Study. Journal of Clinical Microbiology, 2001, 39, 1763-1770.	3.9	222
3	Cold plasma-induced modification of the dyeing properties of poly(ethylene terephthalate) fibers. Applied Surface Science, 2006, 252, 2265-2275.	6.1	100
4	FT-IR microspectroscopy for microbiological studies. Journal of Microbiological Methods, 2000, 42, 17-27.	1.6	88
5	Cold plasma treatment of PET fabrics: AFM surface morphology characterisation. Applied Surface Science, 2003, 219, 311-316.	6.1	82
6	Chemical–Physical Changes in Cell Membrane Microdomains of Breast Cancer Cells After Omega-3 PUFA Incorporation. Cell Biochemistry and Biophysics, 2012, 64, 45-59.	1.8	77
7	Hybrid iron oxide-copolymer micelles and vesicles as contrast agents for MRI: impact of the nanostructure on the relaxometric properties. Journal of Materials Chemistry B, 2013, 1, 5317.	5.8	56
8	Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. Nanomaterials, 2020, 10, 1919.	4.1	55
9	Poly(lactide-co-glycolide) microspheres containing bupivacaine: comparison between gamma and beta irradiation effects. Journal of Controlled Release, 2003, 90, 281-290.	9.9	54
10	Synthesis and characterization of polyethylenimine-based iron oxide composites as novel contrast agents for MRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2009, 22, 77-87.	2.0	46
11	Magnetic and relaxometric properties of polyethylenimine-coated superparamagnetic MRI contrast agents. Journal of Magnetism and Magnetic Materials, 2008, 320, e316-e319.	2.3	43
12	Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. RSC Advances, 2017, 7, 15500-15512.	3.6	43
13	DNA bending by photolyase in specific and non-specific complexes studied by atomic force microscopy. Nucleic Acids Research, 1999, 27, 3875-3880.	14.5	42
14	Wettability and Dyeability Modulation of Poly(ethylene terephthalate) Fibers through Cold SF6 Plasma Treatment. Plasma Processes and Polymers, 2005, 2, 64-72.	3.0	40
15	Colloidal assemblies of oriented maghemite nanocrystals and their NMR relaxometric properties. Dalton Transactions, 2014, 43, 8395-8404.	3.3	35
16	Characterization of magnetic nanoparticles from <i>Magnetospirillum Gryphiswaldense</i> as potential theranostics tools. Contrast Media and Molecular Imaging, 2016, 11, 139-145.	0.8	34
17	Characterization of plasma processing for polymers. Surface and Coatings Technology, 2003, 174-175, 886-890.	4.8	32
18	Atomic force microscopy imaging of lipid rafts of human breast cancer cells. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2943-2949.	2.6	31

#	Article	IF	CITATIONS
19	Magnetic and relaxometric properties of Mn ferrites. Journal Physics D: Applied Physics, 2008, 41, 134021.	2.8	29
20	In-gel study of the effect of magnetic nanoparticles immobilization on their heating efficiency for application in Magnetic Fluid Hyperthermia. Journal of Magnetism and Magnetic Materials, 2019, 471, 504-512.	2.3	28
21	Optical and structural properties of siliconlike films prepared by plasma-enhanced chemical-vapor deposition. Journal of Applied Physics, 2005, 97, 023533.	2.5	26
22	Percolating hierarchical defect structures drive phase transformation in Ce1â^'xGdxO2â^'x/2: a total scattering study. IUCrJ, 2015, 2, 511-522.	2.2	24
23	Tailoring the magnetic core of organic-coated iron oxides nanoparticles to influence their contrast efficiency for MagneticÂResonance Imaging. Journal of Alloys and Compounds, 2019, 770, 58-66.	5. 5	22
24	On the magnetic anisotropy and nuclear relaxivity effects of Co and Ni doping in iron oxide nanoparticles. Journal of Applied Physics, 2016, 119 , .	2.5	19
25	Superparamagnetic iron oxide nanoparticles stabilized by a poly(amidoamine)-rhenium complex as potential theranostic probe. Dalton Transactions, 2014, 43, 1172-1183.	3.3	18
26	Synthesis of pseudopolyrotaxanes-coated Superparamagnetic Iron Oxide Nanoparticles as new MRI contrast agent. Colloids and Surfaces B: Biointerfaces, 2013, 103, 652-657.	5.0	15
27	Inhibition of lysozyme fibrillogenesis by hydroxytyrosol and dopamine: An Atomic Force Microscopy study. International Journal of Biological Macromolecules, 2018, 111, 1100-1105.	7.5	15
28	Comparison between gamma and beta irradiation effects on hydroxypropylmethylcellulose and gelatin hard capsules. AAPS PharmSciTech, 2005, 6, E586-E593.	3.3	14
29	MR imaging and targeting of human breast cancer cells with folate decorated nanoparticles. RSC Advances, 2015, 5, 39760-39770.	3.6	12
30	Atomic force microscopy imaging of actin cortical cytoskeleton of Xenopus laevis oocyte. Journal of Microscopy, 2006, 223, 57-65.	1.8	11
31	Magnetic properties and spin dynamics in the single-molecule paramagnetsCu6FeandCu6Co. Physical Review B, 2009, 80, .	3.2	11
32	How Xylenol Orange and Ferrous Ammonium Sulphate Influence the Dosimetric Properties of PVA–GTA Fricke Gel Dosimeters: A Spectrophotometric Study. Gels, 2022, 8, 204.	4.5	11
33	Optimized PAMAM coated magnetic nanoparticles for simultaneous hyperthermic treatment and contrast enhanced MRI diagnosis. RSC Advances, 2017, 7, 44104-44111.	3.6	9
34	X-ray microscopy of living multicellular organisms with the Prague Asterix Iodine Laser System. Laser and Particle Beams, 2003, 21, 511-516.	1.0	8
35	Soft X-ray contact microscopy of nematode Caenorhabditis elegans. European Physical Journal D, 2004, 30, 235-241.	1.3	8
36	Intermittent contact mode AFM investigation of native plasma membrane of Xenopus laevis oocyte. European Biophysics Journal, 2009, 38, 903-910.	2.2	8

#	Article	IF	Citations
37	Coating Effect on the $1\text{H}\hat{a}\in\text{``NMR}$ Relaxation Properties of Iron Oxide Magnetic Nanoparticles. Nanomaterials, 2020, 10, 1660.	4.1	8
38	Atomic force microscopy investigation of cold-plasma-treated poly(ethyleneterephthalate) textiles. Surface and Interface Analysis, 2003, 35, 410-412.	1.8	7
39	Atomic force microscopy characterization of Xenopus laevis oocyte plasma membrane. Microscopy Research and Technique, 2006, 69, 826-834.	2.2	7
40	Observing Xenopus laevis oocyte plasma membrane by atomic force microscopy. Methods, 2010, 51, 106-113.	3.8	7
41	Read-out of soft x-ray contact microscopy microradiographs by focused ion beam/scanning electron microscope. Scanning, 2005, 27, 249-253.	1.5	6
42	Atomic force microscopy imaging of <i>Xenopus laevis</i> oocyte plasma membrane purified by ultracentrifugation. Microscopy Research and Technique, 2008, 71, 397-402.	2.2	6
43	Crystalline instability of Bi-2212 superconducting whiskers near room temperature. Applied Physics A: Materials Science and Processing, 2009, 95, 479-484.	2.3	6
44	Magnetism and spin dynamics of novel encapsulated iron oxide superparamagnetic nanoparticles. Dalton Transactions, 2013, 42, 10282.	3.3	4
45	Muon spin relaxation investigation of tetranuclear iron(III) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 		