Jae G Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2879065/publications.pdf

Version: 2024-02-01

361413 395702 1,263 61 20 33 h-index citations g-index papers 61 61 61 1436 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data. Frontiers in Human Neuroscience, 2016, 10, 219.	2.0	153
2	Utilization of a combined EEG/NIRS system to predict driver drowsiness. Scientific Reports, 2017, 7, 43933.	3.3	100
3	Interplay of tumor vascular oxygenation and tumor pO[sub 2] observed using near-infrared spectroscopy, an oxygen needle electrode, and [sup 19]F MR pO[sub 2] mapping. Journal of Biomedical Optics, 2003, 8, 53.	2.6	70
4	Spatial Frequency Domain Imaging of Intrinsic Optical Property Contrast in a Mouse Model of Alzheimer's Disease. Annals of Biomedical Engineering, 2011, 39, 1349-1357.	2.5	68
5	Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue. IEEE Engineering in Medicine and Biology Magazine, 2005, 24, 118-121.	0.8	64
6	Intramuscular Cobinamide Sulfite in a Rabbit Model of Sublethal Cyanide Toxicity. Annals of Emergency Medicine, 2010, 55, 352-363.	0.6	58
7	Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring. Journal of Biomedical Optics, 2010, 15, 017001.	2.6	54
8	Exploring brain functional connectivity in rest and sleep states: a fNIRS study. Scientific Reports, 2018, 8, 16144.	3.3	45
9	Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters. Applied Optics, 2003, 42, 2960.	2.1	44
10	Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional nearâ€nfrared spectroscopy (fNIRS) study. Journal of Biophotonics, 2019, 12, e201800298.	2.3	41
11	Sulfanegen sodium treatment in a rabbit model of sub-lethal cyanide toxicity. Toxicology and Applied Pharmacology, 2010, 248, 269-276.	2.8	39
12	Monitoring cerebral hemodynamic change during transcranial ultrasound stimulation using optical intrinsic signal imaging. Scientific Reports, 2017, 7, 13148.	3.3	36
13	PAX6 suppression of glioma angiogenesis and the expression of vascular endothelial growth factor A. Journal of Neuro-Oncology, 2010, 96, 191-200.	2.9	32
14	Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy. Journal of Biomedical Optics, 2016, 21, 027001.	2.6	28
15	Low-cost compact diffuse speckle contrast flowmeter using small laser diode and bare charge-coupled-device. Journal of Biomedical Optics, 2016, 21, 080501.	2.6	26
16	In Vivo Near-Infrared Spectroscopy and Magnetic Resonance Imaging Monitoring of Tumor Response to Combretastatin A-4-Phosphate Correlated With Therapeutic Outcome. International Journal of Radiation Oncology Biology Physics, 2011, 80, 574-581.	0.8	25
17	Recent functional near infrared spectroscopy based brain computer interface systems: Developments, applications and challenges. Biomedical Engineering Letters, 2014, 4, 223-230.	4.1	25
18	Near-Infrared Spectroscopy and Imaging of Tumor Vascular Oxygenation. Methods in Enzymology, 2004, 386, 349-378.	1.0	24

#	Article	IF	Citations
19	Rapid and non-destructive spectroscopic method for classifying beef freshness using a deep spectral network fused with myoglobin information. Food Chemistry, 2021, 352, 129329.	8.2	22
20	Diffuse reflectance spectroscopy to quantify the met-myoglobin proportion and meat oxygenation inside of pork and beef. Food Chemistry, 2019, 275, 369-376.	8.2	20
21	Effects of transcranial ultrasound stimulation pulsed at 40ÅHz on 40ÅHz on 40ÅHz plaques and brain rhythms in 40ÅHz plaques. Translational Neurodegeneration, 40ÅHz 10, 40ÅHz 11, 40ÅHz 11, 40ÅHz 11, 40ÅHz 12, 40ÅHz 11, 40ÅHz 12, 40ÅHz 12, 40ÅHz 13, 40ÅHz 13, 40ÅHz 13, 40ÅHz 13, 40ÅHz 14, 40ÅHz 14, 40ÅHz 15, 40ÅHz 16, 40ÅHz 17, 40ÅHz 18, 40ÅHz 17, 40ÅHz 18, 40ÅHz 19, $40 Å$	8.0	17
22	Investigation of biphasic tumor oxygen dynamics induced by hyperoxic gas intervention: the dynamic phantom approach. Applied Optics, 2008, 47, 242.	2.1	16
23	Non-invasive measurement of hemodynamic change during 8ÂMHz transcranial focused ultrasound stimulation using near-infrared spectroscopy. BMC Neuroscience, 2019, 20, 12.	1.9	16
24	Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy. Journal of Biomedical Optics, 2008, 13, 064027.	2.6	15
25	Imaging of the Finger Vein and Blood Flow for Anti-Spoofing Authentication Using a Laser and a MEMS Scanner. Sensors, 2017, 17, 925.	3.8	15
26	Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy. Journal of Biomedical Optics, 2014, 19, 055001.	2.6	14
27	Changes in thalamo-frontal interaction under different levels of anesthesia in rats. Neuroscience Letters, 2016, 627, 18-23.	2.1	14
28	Wearable Transcranial Ultrasound System for Remote Stimulation of Freely Moving Animal. IEEE Transactions on Biomedical Engineering, 2021, 68, 2195-2202.	4.2	12
29	Investigation of rat breast tumour oxygen consumption by near-infrared spectroscopy. Journal Physics D: Applied Physics, 2005, 38, 2682-2690.	2.8	11
30	Deep Learning-Based Multilevel Classification of Alzheimer's Disease Using Non-invasive Functional Near-Infrared Spectroscopy. Frontiers in Aging Neuroscience, 2022, 14, 810125.	3.4	11
31	Noninvasive In Vivo Monitoring of Cyanide Toxicity and Treatment Using Diffuse Optical Spectroscopy in a Rabbit Model. Military Medicine, 2009, 174, 615-621.	0.8	10
32	Broadband diffuse optical spectroscopy assessment of hemorrhage- and hemoglobin-based blood substitute resuscitation. Journal of Biomedical Optics, 2009, 14, 044027.	2.6	10
33	Synthesis and Antitumor Molecular Mechanism of Agents Based on Amino $2\hat{a} \in (3\hat{a} \in 2, 4\hat{a} \in 2, 5\hat{a} \in 2\hat{a} \in Trimethoxybenzoyl)$ benzo[<i>b</i>) furan: Inhibition of Tubulin and Induction of Apoptosis. ChemMedChem, 2011, 6, 1841-1853.	3.2	10
34	Noninvasive monitoring of treatment response in a rabbit cyanide toxicity model reveals differences in brain and muscle metabolism. Journal of Biomedical Optics, 2012, 17, 1050051.	2.6	10
35	A discrepancy of penile hemodynamics during visual sexual stimulation observed by near-infrared spectroscopy. BMC Urology, 2015, 15, 11.	1.4	10
36	The hemodynamic changes during cupping therapy monitored by using an optical sensor embedded cup. Journal of Biophotonics, 2019, 12, e201800286.	2.3	10

#	Article	IF	CITATIONS
37	Development of simple diffuse optical metabolic spectroscopy for tissue metabolism measurement. Biomedical Optics Express, 2019, 10, 2956.	2.9	9
38	Monitoring of cerebral oxygenation and local field potential with a variation of isoflurane concentration in a rat model. Biomedical Optics Express, 2016, 7, 4114.	2.9	8
39	Met-myoglobin formation, accumulation, degradation, and myoglobin oxygenation monitoring based on multiwavelength attenuance measurement in porcine meat. Journal of Biomedical Optics, 2016, 21, 057002.	2.6	8
40	The changes of cerebral hemodynamics during ketamine induced anesthesia in a rat model. Journal of Biophotonics, 2018, 11, e201800081.	2.3	6
41	Preliminary Study of Gender-Based Brain Lateralization Using Multi-Channel Near-Infrared Spectroscopy. Journal of the Optical Society of Korea, 2015, 19, 284-296.	0.6	6
42	Heart and Lung Sound Measurement Using an Esophageal Stethoscope with Adaptive Noise Cancellation. Sensors, 2021, 21, 6757.	3.8	6
43	Development of an Integrated EEG/fNIRS Brain Function Monitoring System. Sensors, 2021, 21, 7703.	3.8	6
44	Novel diagnostic tools for identifying cognitive impairment using olfactory-stimulated functional near-infrared spectroscopy: patient-level, single-group, diagnostic trial. Alzheimer's Research and Therapy, 2022, 14, 39.	6.2	5
45	Investigation of bi-phasic tumor oxygen dynamics induced by hyperoxic gas intervention: A numerical study. Optics Express, 2005, 13, 4465.	3.4	4
46	A simple but quantitative method for non-destructive monitoring of myoglobin redox forms inside the meat. Journal of Food Science and Technology, 2019, 56, 5354-5361.	2.8	4
47	Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy. Journal of Biomedical Optics, 2017, 22, 121603.	2.6	4
48	Differential modulation of thalamo-parietal interactions by varying depths of isoflurane anesthesia. PLoS ONE, 2017, 12, e0175191.	2.5	4
49	Nonuniform tumor vascular oxygen dynamics monitored by three-channel near-infrared spectroscopy., 2003,,.		3
50	Breast tumor hemodynamic response during a breath-hold as a biomarker to predict chemotherapeutic efficacy: preclinical study. Journal of Biomedical Optics, 2018, 23, 1.	2.6	3
51	<title>Interplay of tumor vascular oxygenation and pO<formula><inf><roman></ir></roman></ir></roman></formula> in tumors using NIRS and needle electrode</title> ., 2001, 4250, 429.		2
52	Simultaneous Monitoring of Hemodynamic Response in the Pre-Frontal Cortex and Genital Organ During Sexual Arousal Using Near-Infrared Spectroscopy. Sexual Medicine, 2018, 6, 234-238.	1.6	2
53	Design of an Optical Probe to Monitor Vaginal Hemodynamics during Sexual Arousal. Sensors, 2019, 19, 2129.	3.8	2
54	Changes in Mitochondria-Related Gene Expression upon Acupuncture at LR3 in the D-Galactosamine-Induced Liver Damage Rat Model. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	1.2	2

#	Article	IF	CITATIONS
55	Brca1/p53 deficient mouse breast tumor hemodynamics during hyperoxic respiratory challenge monitored by a novel wide-field functional imaging (WiFI) system. Proceedings of SPIE, 2009, , .	0.8	1
56	Longitudinal Raman Spectroscopic Observation of Skin Biochemical Changes due to Chemotherapeutic Treatment for Breast Cancer in Small Animal Model. Journal of Spectroscopy, 2017, 2017, 1-9.	1.3	1
57	An approach for correcting optical paths of different wavelength lasers in diffusive medium based on Monte Carlo simulation. Optics and Laser Technology, 2019, 120, 105712.	4.6	1
58	Analysis of relation between skin elasticity and the entropy of skin image using nearâ€infrared and visible light sources. Journal of Biophotonics, 2020, 13, e201900213.	2.3	1
59	Chemotherapeutic (cyclophosphamide) effects on rat breast tumor hemodynamics monitored by multi-channel NIRS., 2005,,.		O
60	Simultaneous monitoring of hemodynamic changes from brain and spinal cord during visual sexual stimulation. , 2014 , , .		0
61	Changes of Apomorphine-Induced Vaginal Hemodynamics in an Ovariectomized Rat Model Using Near-Infrared Spectroscopic Probe. Journal of Sexual Medicine, 2021, 18, 1328-1336.	0.6	0