

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2878341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonreciprocal dynamics of ferrimagnetic bimerons. Physical Review B, 2022, 105, .	3.2	7
2	Generation and manipulation of skyrmions and other topological spin structures with rare metals. Rare Metals, 2022, 41, 2200-2216.	7.1	24
3	Dynamic properties of a ferromagnetic skyrmion in an in-plane magnetic field. Journal of Applied Physics, 2022, 131, .	2.5	1
4	Exchange-Torque-Triggered Fast Switching of Antiferromagnetic Domains. Physical Review Letters, 2022, 128, 137201.	7.8	6
5	Single-bit full adder and logic gate based on synthetic antiferromagnetic bilayer skyrmions. Rare Metals, 2022, 41, 2249-2258.	7.1	6
6	Structural transition of skyrmion quasiparticles under compression. Physical Review B, 2022, 105, .	3.2	5
7	Mutual conversion between a magnetic Néel hopfion and a Néel toron. Physical Review B, 2022, 105, .	3.2	7
8	Bifurcation of a topological skyrmion string. Physical Review B, 2022, 105, .	3.2	14
9	Antiferromagnetic Skyrmions and Bimerons. Topics in Applied Physics, 2021, , 441-457.	0.8	0
10	Signal detection based on the chaotic motion of an antiferromagnetic domain wall. Applied Physics Letters, 2021, 118, .	3.3	4
11	A frustrated bimeronium: Static structure and dynamics. Applied Physics Letters, 2021, 118, .	3.3	13
12	A ferromagnetic skyrmion-based nano-oscillator with modified perpendicular magnetic anisotropy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 392, 127157.	2.1	12
13	Current-induced dynamics of skyrmion tubes in synthetic antiferromagnetic multilayers. Physical Review B, 2021, 103, .	3.2	16
14	Confinement and Protection of Skyrmions by Patterns of Modified Magnetic Properties. Nano Letters, 2021, 21, 4320-4326.	9.1	32
15	Transcription and logic operations of magnetic skyrmions in bilayer cross structures. Journal of Physics Condensed Matter, 2021, 33, 404001.	1.8	3
16	Domain wall dynamics in ferromagnet/Ru/ferromagnet stacks with a wedged spacer. Applied Physics Letters, 2021, 119, .	3.3	5
17	Antiferromagnetic skyrmion-based logic gates controlled by electric currents and fields. Applied Physics Letters, 2021, 119, .	3.3	40
18	Conventional applications of skyrmions. , 2021, , 367-391.		0

Jing Xia

#	Article	IF	CITATIONS
19	Dynamics of ferrimagnetic skyrmionium driven by spin-orbit torque. Physical Review B, 2021, 104, .	3.2	12
20	Configurable pixelated skyrmions on nanoscale magnetic grids. Communications Physics, 2021, 4, .	5.3	14
21	Dynamic transformation between a skyrmion string and a bimeron string in a layered frustrated system. Physical Review B, 2021, 104, .	3.2	7
22	Dynamics of antiskyrmions induced by the voltage-controlled magnetic anisotropy gradient. Journal of Magnetism and Magnetic Materials, 2020, 496, 165922.	2.3	14
23	Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. Journal of Physics Condensed Matter, 2020, 32, 143001.	1.8	268
24	A ferromagnetic skyrmion-based nano-oscillator with modified profile of Dzyaloshinskii-Moriya interaction. Journal of Magnetism and Magnetic Materials, 2020, 496, 165912.	2.3	27
25	Currentâ€Induced Helicity Reversal of a Single Skyrmionic Bubble Chain in a Nanostructured Frustrated Magnet. Advanced Materials, 2020, 32, e1904815.	21.0	47
26	Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nature Communications, 2020, 11, 3577.	12.8	117
27	Bimeron clusters in chiral antiferromagnets. Npj Computational Materials, 2020, 6, .	8.7	34
28	Magnetic skyrmionium diode with a magnetic anisotropy voltage gating. Applied Physics Letters, 2020, 117, .	3.3	30
29	Skyrmion-based artificial synapses for neuromorphic computing. Nature Electronics, 2020, 3, 148-155.	26.0	346
30	A spiking neuron constructed by the skyrmion-based spin torque nano-oscillator. Applied Physics Letters, 2020, 116, .	3.3	36
31	Current-driven skyrmionium in a frustrated magnetic system. Applied Physics Letters, 2020, 117, .	3.3	22
32	Topology-Dependent Brownian Gyromotion of a Single Skyrmion. Physical Review Letters, 2020, 125, 027206.	7.8	50
33	Direct imaging of an inhomogeneous electric current distribution using the trajectory of magnetic half-skyrmions. Science Advances, 2020, 6, eaay1876.	10.3	20
34	Current-Induced Dynamics and Chaos of Antiferromagnetic Bimerons. Physical Review Letters, 2020, 124, 037202.	7.8	82
35	Dynamics of an elliptical ferromagnetic skyrmion driven by the spin–orbit torque. Applied Physics Letters, 2020, 116, .	3.3	27
36	Realization of Isolated and High-Density Skyrmions at Room Temperature in Uncompensated Synthetic Antiferromagnets. Nano Letters, 2020, 20, 3299-3305.	9.1	42

JING XIA

#	Article	IF	CITATIONS
37	Static and dynamic properties of bimerons in a frustrated ferromagnetic monolayer. Physical Review B, 2020, 101, .	3.2	40
38	A ferromagnetic skyrmion-based diode with a voltage-controlled potential barrier. Nanoscale, 2020, 12, 9507-9516.	5.6	34
39	Dynamics of ferromagnetic bimerons driven by spin currents and magnetic fields. Physical Review B, 2020, 102, .	3.2	19
40	A skyrmion-based spin-torque nano-oscillator with enhanced edge. Journal of Magnetism and Magnetic Materials, 2019, 491, 165610.	2.3	36
41	Dynamics of an antiferromagnetic skyrmion in a racetrack with a defect. Physical Review B, 2019, 100, .	3.2	37
42	Spin torque nano-oscillators based on antiferromagnetic skyrmions. Applied Physics Letters, 2019, 114,	3.3	106
43	Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer. Physical Review Applied, 2019, 11, .	3.8	31
44	Generation and Hall effect of skyrmions enabled using nonmagnetic point contacts. Physical Review B, 2019, 100, .	3.2	14
45	Current-Induced Dynamics of the Antiferromagnetic Skyrmion and Skyrmionium. Physical Review Applied, 2019, 12, .	3.8	46
46	Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. Nano Letters, 2019, 19, 353-361.	9.1	97
47	Dynamics of a magnetic skyrmionium driven by spin waves. Applied Physics Letters, 2018, 112, .	3.3	43
48	Controllable transport of a skyrmion in a ferromagnetic narrow channel with voltage-controlled magnetic anisotropy. Journal Physics D: Applied Physics, 2018, 51, 205002.	2.8	17
49	Current-induced skyrmion dynamics in a frustrated magnetic film. , 2018, , .		0
50	Dynamics of a magnetic skyrmionium driven by a spin wave. , 2018, , .		1
51	Dynamics of the antiferromagnetic skyrmion induced by a magnetic anisotropy gradient. Physical Review B, 2018, 98, .	3.2	84
52	Dynamics of Magnetic Skyrmion Clusters Driven by Spin-Polarized Current With a Spatially Varied Polarization. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	6
53	The influence of the edge effect on the skyrmion generation in a magnetic nanotrack. AIP Advances, 2017, 7, .	1.3	14
54	Motion of skyrmions in nanowires driven by magnonic momentum-transfer forces. New Journal of Physics, 2017, 19, 065001.	2.9	46

JING XIA

#	Article	IF	CITATIONS
55	An Improved Racetrack Structure for Transporting a Skyrmion. Scientific Reports, 2017, 7, 45330.	3.3	92
56	A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation. Journal of Applied Physics, 2017, 122, .	2.5	24
57	Skyrmion dynamicsÂin a frustrated ferromagnetic filmÂand current-induced helicity locking-unlocking transition. Nature Communications, 2017, 8, 1717.	12.8	147
58	Magnetic Skyrmion Transport in a Nanotrack With Spatially Varying Damping and Non-adiabatic Torque. IEEE Transactions on Magnetics, 2016, , 1-1.	2.1	7
59	Control and manipulation of a magnetic skyrmionium in nanostructures. Physical Review B, 2016, 94, .	3.2	137
60	Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction. Scientific Reports, 2016, 6, 25189.	3.3	11
61	Hysteresis of misaligned hard–soft grains. Journal of Magnetism and Magnetic Materials, 2016, 397, 181-187.	2.3	4
62	Skyrmion Spin Structure of Exchange-Coupled Magnetic Core–Shell Nanodisk. IEEE Transactions on Magnetics, 2015, 51, 1-3.	2.1	1
63	Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Scientific Reports, 2015, 5, 7643.	3.3	360
64	Angular Dependence of the Pinning Fields for Hard/Soft Multilayers. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	1
65	Micromagnetic simulation of Sm—Co/α-Fe/Sm—Co trilayers with various angles between easy axes and the film plane. Chinese Physics B, 2014, 23, 097504.	1.4	7
66	Significant deterioration of energy products in exchange-coupled composite magnets. Journal of Applied Physics, 2012, 112, 013918.	2.5	13