
Sergio Minucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2877577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Expression and Localization of EHBP1L1 during the First Wave of Rat Spermatogenesis Suggest Its Involvement in Acrosome Biogenesis. Biomedicines, 2022, 10, 181.	3.2	8
2	Potential protective effect of lactic acid bacteria against zearalenone causing reprotoxicity in male mice. Toxicon, 2022, 209, 56-65.	1.6	6
3	Autophagic event and metabolomic disorders unveil cellular toxicity of environmental microplastics on marine polychaete Hediste diversicolor. Environmental Pollution, 2022, 302, 119106.	7.5	25
4	New Insight on the In Vitro Effects of Melatonin in Preserving Human Sperm Quality. International Journal of Molecular Sciences, 2022, 23, 5128.	4.1	14
5	Male Reproduction: Regulation, Differentiation and Epigenetics. Genes, 2022, 13, 1001.	2.4	0
6	Preliminary study of the ameliorative effects of melatonin on cadmiumâ€induced morphological and biochemical alterations in the rat Harderian gland. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2022, 337, 729-738.	1.9	2
7	First evidence of the protective role of melatonin in counteracting cadmium toxicity in the rat ovary via the mTOR pathway. Environmental Pollution, 2021, 270, 116056.	7.5	26
8	Editorial. General and Comparative Endocrinology, 2021, 302, 113666.	1.8	0
9	Altered Expression of DAAM1 and PREP Induced by Cadmium Toxicity Is Counteracted by Melatonin in the Rat Testis. Genes, 2021, 12, 1016.	2.4	26
10	Preliminary Investigation on the Involvement of Cytoskeleton-Related Proteins, DAAM1 and PREP, in Human Testicular Disorders. International Journal of Molecular Sciences, 2021, 22, 8094.	4.1	5
11	Preliminary Investigation on the Ameliorative Role Exerted by D-Aspartic Acid in Counteracting Ethane Dimethane Sulfonate (EDS) Toxicity in the Rat Testis. Animals, 2021, 11, 133.	2.3	14
12	Evidence of melatonin ameliorative effects on the blood-testis barrier and sperm quality alterations induced by cadmium in the rat testis. Ecotoxicology and Environmental Safety, 2021, 226, 112878.	6.0	48
13	Study of expression of genes potentially responsible for reduced fitness in patients with myotonic dystrophy type 1 and identification of new biomarkers of testicular function. Molecular Reproduction and Development, 2020, 87, 45-52.	2.0	14
14	Melatonin protects bone against cadmium-induced toxicity via activation of Wnt/β-catenin signaling pathway. Toxicology Mechanisms and Methods, 2020, 30, 237-245.	2.7	23
15	Sexual and functional outcomes of prostate artery embolisation: A prospective longâ€ŧerm followâ€up, large cohort study. International Journal of Clinical Practice, 2020, 74, e13454.	1.7	6
16	The Harderian gland: Endocrine function and hormonal control. General and Comparative Endocrinology, 2020, 297, 113548.	1.8	13
17	EH domain binding protein 1-like 1 (EHBP1L1), a protein with calponin homology domain, is expressed in the rat testis. Zygote, 2020, 28, 441-446.	1.1	7
18	D-Aspartate Upregulates DAAM1 Protein Levels in the Rat Testis and Induces Its Localization in Spermatogonia Nucleus. Biomolecules, 2020, 10, 677.	4.0	23

#	Article	IF	CITATIONS
19	Cadmiumâ€induced toxicity increases prolyl endopeptidase (PREP) expression in the rat testis. Molecular Reproduction and Development, 2020, 87, 565-573.	2.0	23
20	DAAM1 and PREP are involved in human spermatogenesis. Reproduction, Fertility and Development, 2020, 32, 484.	0.4	21
21	Expression pattern dysregulation of stress- and neuronal activity-related genes in response to prenatal stress paradigm in zebrafish larvae. Cell Stress and Chaperones, 2019, 24, 1005-1012.	2.9	12
22	Study on PREP localization in mouse seminal vesicles and its possible involvement during regulated exocytosis. Zygote, 2019, 27, 160-165.	1.1	15
23	Ex vivo lung cancer spheroids resemble treatment response of a patient with NSCLC to chemotherapy and immunotherapy: case report and translational study. ESMO Open, 2019, 4, e000536.	4.5	26
24	Subcellular Localization of Prolyl Endopeptidase During the First Wave of Rat Spermatogenesis and in Rat and Human Sperm. Journal of Histochemistry and Cytochemistry, 2019, 67, 229-243.	2.5	21
25	D-Asp upregulates PREP and GluA2/3 expressions and induces p-ERK1/2 and p-Akt in rat testis. Reproduction, 2019, 158, 357-367.	2.6	21
26	Temporal and spatial expression of insulinâ€like peptide (<i>insl5</i> a and <i>insl5</i> b) paralog genes during the embryogenesis of <i>Danio rerio</i> Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 33-40.	1.3	5
27	First evidence of DAAM1 localization in mouse seminal vesicles and its possible involvement during regulated exocytosis. Comptes Rendus - Biologies, 2018, 341, 228-234.	0.2	18
28	Involvement of testicular DAAM1 expression in zinc protection against cadmiumâ€induced male rat reproductive toxicity. Journal of Cellular Physiology, 2018, 233, 630-640.	4.1	45
29	Prothymosin alpha expression in the vertebrate testis: a comparative review. Zygote, 2017, 25, 760-770.	1.1	13
30	Study of anti-Müllerian hormone levels in patients with Myotonic Dystrophy Type 1. Preliminary results. Acta Myologica, 2017, 36, 199-202.	1.5	1
31	Prolyl Endopeptidase (PREP) is Associated With Male Reproductive Functions and Gamete Physiology in Mice. Journal of Cellular Physiology, 2016, 231, 551-557.	4.1	31
32	Prothymosin alpha expression and localization during the spermatogenesis ofDanio rerio. Zygote, 2016, 24, 583-593.	1.1	16
33	First Evidence of DAAM1 Localization During the Postâ€Natal Development of Rat Testis and in Mammalian Sperm. Journal of Cellular Physiology, 2016, 231, 2172-2184.	4.1	25
34	Expression pattern of zebrafish <i>rxfp2</i> homologue genes during embryonic development. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 605-613.	1.3	7
35	Expression analysis of five zebrafish <i>rxfp3</i> homologues reveals evolutionary conservation of gene expression pattern. , 2015, 324, 22-29.		6
36	First evidence of prothymosin alpha localization in the acrosome of mammalian male gametes. Journal of Cellular Physiology, 2013, 228, 1629-1637.	4.1	9

#	Article	IF	CITATIONS
37	Developmental expression pattern of two zebrafish <i>rxfp3</i> paralogue genes. Development Growth and Differentiation, 2013, 55, 766-775.	1.5	11
38	Thyroid hormone receptor-β gene expression in the brain of the frog Pelophylax esculentus: Seasonal, hormonal and temperature regulation. General and Comparative Endocrinology, 2012, 178, 511-518.	1.8	8
39	Characterization, c <scp>DNA</scp> cloning and expression pattern of relaxin gene during embryogenesis of <i><scp>D</scp>anio rerio</i> . Development Growth and Differentiation, 2012, 54, 579-587.	1.5	8
40	Molecular pathways involved in the cyclic activity of frog (Pelophylax esculentus) Harderian gland: Influence of temperature and testosterone. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2011, 158, 71-76.	1.6	10
41	Mast Cells in Nonmammalian Vertebrates. International Review of Cell and Molecular Biology, 2011, 290, 1-53.	3.2	50
42	Expression of Sexual Hormones Receptors in Oral Squamous Cell Carcinoma. International Journal of Immunopathology and Pharmacology, 2011, 24, 129-132.	2.1	39
43	Identification of a cDNA encoding for Ghrelin in the testis of the frog Pelophylax esculentus and its involvement in spermatogenesis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 158, 367-373.	1.8	6
44	First evidence of a cDNA encoding for a melatonin receptor (mel 1b) in brain, retina, and testis of <i>Pelophylax esculentus</i> . Journal of Experimental Zoology, 2011, 315A, 520-526.	1.2	2
45	GPR30 is overexpressed in post-puberal testicular germ cell tumors. Cancer Biology and Therapy, 2011, 11, 609-613.	3.4	65
46	Expression of prothymosin alpha in meiotic and postâ€meiotic germ cells during the first wave of rat spermatogenesis. Journal of Cellular Physiology, 2010, 224, 362-368.	4.1	17
47	Characterization and developmental expression pattern of the relaxin receptor <i>rxfp1</i> gene in zebrafish. Development Growth and Differentiation, 2010, 52, 799-806.	1.5	14
48	Ochratoxin A induces craniofacial malformation in mice acting on Dlx5 gene expression. Frontiers in Bioscience - Elite, 2010, E2, 133-142.	1.8	2
49	Expression of melatonin (MT1, MT2) and melatonin-related receptors in the adult rat testes and during development. Zygote, 2010, 18, 257-264.	1.1	36
50	Evidence for the involvement of prothymosin α in the spermatogenesis of the frog <i>Rana esculenta</i> . Journal of Experimental Zoology, 2009, 311A, 1-10.	1.2	12
51	Duplicated zebrafish relaxinâ€3 gene shows a different expression pattern from that of the coâ€orthologue gene. Development Growth and Differentiation, 2009, 51, 715-722.	1.5	21
52	Connexin43 Expression in the Testis of Frog <i>Rana Esculenta</i> : Sex Hormonal Regulation. Annals of the New York Academy of Sciences, 2009, 1163, 425-427.	3.8	5
53	Initiation and kinetic profiles of spermatogenesis in the frog, Runa esculenta (Amphibia). Journal of Zoology, 2009, 201, 515-525.	1.7	18
54	Differential expression of duplicated genes for prothymosin alpha during zebrafish development. Developmental Dynamics, 2008, 237, 1112-1118.	1.8	17

#	Article	IF	CITATIONS
55	Two neuron clusters in the stem of postembryonic zebrafish brain specifically express <i>relaxin</i> â€3 gene: First evidence of nucleus incertus in fish. Developmental Dynamics, 2008, 237, 3864-3869.	1.8	36
56	Cortical spreading depression induces the expression of iNOS, HIF-11̂±, and LDH-A. Neuroscience, 2008, 153, 182-188.	2.3	19
57	A new sex dimorphism in the Harderian gland of the frog Rana esculenta. Canadian Journal of Zoology, 2007, 85, 909-915.	1.0	3
58	The expression level of frog relaxin mRNA (fRLX), in the testis of Rana esculenta, is influenced by testosterone. Journal of Experimental Biology, 2006, 209, 3806-3811.	1.7	13
59	Connexin 43 expression in the testis of the frog Rana esculenta. Zygote, 2006, 14, 349-357.	1.1	14
60	Expression of four histone lysine-methyltransferases in parotid gland tumors. Anticancer Research, 2006, 26, 2063-7.	1.1	15
61	Environmental influence on testicular MAP kinase (ERK1) activity in the frog Rana esculenta. Journal of Experimental Biology, 2004, 207, 2209-2213.	1.7	11
62	Inhibition of the increased 17β-estradiol-induced mast cell number by melatonin in the testis of the frog Rana esculenta, in vivo and in vitro. Journal of Experimental Biology, 2004, 207, 437-441.	1.7	23
63	Effects of melatonin treatment on Leydig cell activity in the testis of the frog Rana esculenta. Zygote, 2004, 12, 293-299.	1.1	17
64	Testicular Activity of Mos in the Frog, Rana esculenta: A New Role in Spermatogonial Proliferation1. Biology of Reproduction, 2004, 70, 1782-1789.	2.7	16
65	Androgen and estrogen receptors expression in the rat exorbital lacrimal gland in relation to ?harderianization?. The Journal of Experimental Zoology, 2004, 301A, 297-306.	1.4	13
66	Ethane 1,2-dimethane sulphonate is a useful tool for studying cell-to-cell interactions in the testis of the frog, Rana esculenta. General and Comparative Endocrinology, 2003, 131, 38-47.	1.8	23
67	Inhibition of the basal and oestradiol-stimulated mitotic activity of primary spermatogonia by melatonin in the testis of the frog, Rana esculenta, in vivo and in vitro. Reproduction, 2003, 126, 83-90.	2.6	21
68	Cytoplasmic Versus Nuclear Localization of Fos-Related Proteins in the Frog, Rana esculenta, Testis: In Vivo and Direct In Vitro Effect of a Gonadotropin-Releasing Hormone Agonist1. Biology of Reproduction, 2003, 68, 954-960.	2.7	24
69	First evidence of prothymosin α in a non-mammalian vertebrate and its involvement in the spermatogenesis of the frog Rana esculenta. Mechanisms of Development, 2002, 110, 213-217.	1.7	21
70	The amphibian testis as model to study germ cell progression during spermatogenesis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 132, 131-139.	1.6	52
71	Temporal and spatial localization of prothymosin ? transcript in the Harderian gland of the frog,Rana esculenta. The Journal of Experimental Zoology, 2002, 292, 633-639.	1.4	10
72	Morphology of the salivary glands of three Squamata species: Podarcis sicula sicula, Tarentola mauritanica and Coluber viridiflavus. Acta Zoologica, 2002, 83, 117-124.	0.8	3

#	Article	IF	CITATIONS
73	Isolation and Characterization of a Novel Member of the Relaxin/Insulin Family from the Testis of the Frog Rana esculenta*. Endocrinology, 2001, 142, 3231-3238.	2.8	31
74	Isolation and Characterization of a Novel Member of the Relaxin/Insulin Family from the Testis of the Frog Rana esculenta. Endocrinology, 2001, 142, 3231-3238.	2.8	12
75	Effects of sex steroid hormones and their antagonists on mast cell number in the testis of the frog, Rana esculenta. Zygote, 2000, 8, 225-234.	1.1	14
76	Morphology of the Harderian gland of the Gecko, Tarentola mauritanica. , 2000, 244, 137-142.		18
77	Effects of multiple injections of ethane 1,2-dimethane sulphonate (EDS) on the frog,Rana esculenta, testicular activity. The Journal of Experimental Zoology, 2000, 287, 384-393.	1.4	10
78	Interactions Between Nerves and Mast Cells in Amphibians. , 2000, , 117-130.		3
79	c-fos Activity in Rana esculenta Testis: Seasonal and Estradiol-Induced Changes*. Endocrinology, 1999, 140, 3238-3244.	2.8	50
80	c-fos Activity in Rana esculenta Testis: Seasonal and Estradiol-Induced Changes. Endocrinology, 1999, 140, 3238-3244.	2.8	16
81	In situ characterization of mast cells in the frog Rana esculenta. Cell and Tissue Research, 1998, 292, 151-162.	2.9	37
82	TSH and thyroid hormones induce the release of secretory granules in the harderian gland of hypophysectomized frogs, (Rana esculenta): morphological observations. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 120, 383-387.	0.5	3
83	Number of Mast Cells in the Harderian Gland of the LizardPodarcis sicula sicula(Raf): The Annual Cycle and Its Relation to Environmental Factors and Estradiol Administration. General and Comparative Endocrinology, 1997, 107, 394-400.	1.8	13
84	Evidence for a intimate relationship between mast cells and nerve fibers in the tongue of the frog,Rana esculenta. Rendiconti Lincei, 1997, 8, 93-100.	2.2	5
85	17βâ€estradiol effects on mast cell number and spermatogonial mitotic index in the testis of the frog, <i>Rana esculenta</i> . The Journal of Experimental Zoology, 1997, 278, 93-100.	1.4	53
86	Induction of S-phase entry by a gonadotropin releasing hormone agonist (buserelin) in the frog, Rana esculenta, primary spermatogonia. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1996, 113, 99-102.	0.5	7
87	Atrial natriuretic peptide, bradykinin, and angiotensin II-like immunoreactivity in the Harderian gland of the terrapinPseudemys scripta: Response to osmotic stress. , 1996, 276, 425-431.		1
88	Effects of prolactin and cortisol on the Harderian gland of the terrapin,Pseudemys scripta, adapted to different salinities. , 1996, 244, 225-234.		5
89	Cell Biology of the Harderian Gland. International Review of Cytology, 1996, 168, 1-80.	6.2	76
90	Organogenesis of the orbital glands in the lizard Podarcis s. sicula: a histological, histochemical and ultrastructural study. Anatomy and Embryology, 1995, 192, 43-52.	1.5	4

#	Article	IF	CITATIONS
91	Effect of cholinergic secretagogue substances on the morphology of the Harderian gland in the frog, Rana esculenta. Comparative Biochemistry and Physiology A, Comparative Physiology, 1995, 112, 29-34.	0.6	5
92	Ethane 1,2-dimethane Sulfonate Effects on the Testis of the Lizard, Podarcis s. sicula Raf: Morphological and Hormonal Changes. General and Comparative Endocrinology, 1995, 97, 273-282.	1.8	20
93	Changes in Proto-oncogene Activity in the Testis of the Frog, Rana esculenta, during the Annual Reproductive Cycle. General and Comparative Endocrinology, 1995, 99, 127-136.	1.8	23
94	Mast cell-Leydig cell relationships in the testis of the lizard <i>podarcis s. sicula</i> Raf: thermal manipulation, ethane 1,2-dimethane sulphonate (EDS) and sex hormone treatment. Zygote, 1995, 3, 259-264.	1.1	21
95	The Effects of Testosterone and Estradiol on Mast Cell Number in the Harderian Gland of the Frog, Rana esculenta. Zoological Science, 1995, 12, 457-466.	0.7	20
96	Detection of c-mos related products in the dogfish (Scyliorhinus canicula) testis. Molecular and Cellular Endocrinology, 1995, 109, 127-132.	3.2	11
97	Detection of Proto-Oncogene-Like Activity in the Testis of Scyliorhinus Canicula (Elasmobranchs). Animal Biology, 1994, 45, 157-159.	0.4	4
98	Regeneration of the Testicular Interstitial Compartment after Ethane Dimethane Sulfonate Treatment in the Hypophysectomized Frog Rana esculenta: Independence of Pituitary Control. General and Comparative Endocrinology, 1994, 95, 84-91.	1.8	8
99	The effect of sex hormones on lipid content and mast cell number in the harderian gland of the female toad, Bufo viridis. Tissue and Cell, 1994, 26, 797-805.	2.2	16
100	The effects of gonadectomy and testosterone treatment on the Harderian gland of the green frog, Rana esculenta. Cell and Tissue Research, 1993, 273, 201-208.	2.9	17
101	Dopamine regulation of testicular activity in intact and hypophysectomized frogs,Rana esculenta. Experientia, 1993, 49, 65-67.	1.2	6
102	Testosterone induction of poly(A)+-RNA synthesis and [35S]methionine incorporation into proteins of Rana esculenta Harderian gland. Molecular and Cellular Endocrinology, 1992, 84, R51-R56.	3.2	13
103	The Harderian Gland of Amphibians and Reptiles. , 1992, , 91-108.		17
104	Immunocytochemical identification of some regulatory peptides (gastrin, gastrin-releasing peptide,) Tj ETQq0 0 0 esculenta. Cell and Tissue Research, 1992, 270, 609-611.	rgBT /Ov 2.9	verlock 10 Tf 5 9
105	Ultrastructural investigation of the corpora atretica of the electric ray, Torpedo marmorata. General and Comparative Endocrinology, 1992, 86, 72-80.	1.8	16
106	Effect of castration and testosterone therapy on harderian gland protein patterns of the golden hamster Mesocricetus auratus. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 102, 601-603.	0.2	11
107	Resumption of testicular activity in Gobius paganellus after administration of ethane 1,2-dimethane sulfonate (EDS). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 102, 319-323.	0.2	4
108	Histology, histochemistry, and ultrastructure of the harderian gland of the snakeColuber viridiflavus. Journal of Morphology, 1992, 211, 207-212.	1.2	16

#	Article	IF	CITATIONS
109	Intratesticular control of spermatogenesis in the frog,Rana esculenta. The Journal of Experimental Zoology, 1992, 264, 113-118.	1.4	24
110	The orbital glands of the chelonians Pseudemys scripta and Testudo graeca: comparative histological, histochemical and ultrastructural investigations. Journal of Anatomy, 1992, 180 (Pt 1), 1-13.	1.5	5
111	Mallory stain may indicate differential rates of RNA synthesis: I. A seasonal cycle in the harderian gland of the green frog (Rana esculenta). European Journal of Histochemistry, 1992, 36, 81-90.	1.5	11
112	Mallory stain may indicate differential rates of RNA synthesis: II. Comparative observations in vertebrate nuclei. European Journal of Histochemistry, 1992, 36, 187-96.	1.5	4
113	Effects of hypophysectomy and replacement therapy on the Harderian gland ofRana esculenta. Rendiconti Lincei, 1991, 2, 415-419.	2.2	3
114	Sex steroid binding proteins in the Harderian gland of nonmammalian tetrapods. Rendiconti Lincei, 1991, 2, 421-424.	2.2	5
115	Androgen receptor in the Harderian gland of Rana esculenta. Journal of Endocrinology, 1991, 129, 227-232.	2.6	29
116	Number of mast cells in the harderian gland of the green frog, Rana esculenta: the annual cycle and its relation to environmental and hormonal factors. Journal of Anatomy, 1991, 179, 75-83.	1.5	15
117	Morphological and hormonal changes in the frog, Rana esculenta, testis after administration of ethane dimethane sulfonate. General and Comparative Endocrinology, 1990, 79, 335-345.	1.8	32
118	Indirect evidence for a physiological role exerted by a "Testicular gonadotropin-releasing hormone― in the frog, Rana esculenta. General and Comparative Endocrinology, 1990, 79, 147-153.	1.8	8
119	Regulation of the testicular activity in the marine teleost fish, Gobius paganellus. General and Comparative Endocrinology, 1990, 80, 1-8.	1.8	12
120	Harderian gland and the lacrimal gland of the lizardPodarcis s. sicula: Histology, histochemistry, and ultrastructure. The Anatomical Record, 1990, 226, 269-278.	1.8	37
121	Organogenesis of the Harderian gland in <i>Rana esculenta</i> and <i>Bufo viridis</i> . Bollettino Di Zoologia, 1990, 57, 221-224.	0.3	3
122	Influence of light and temperature on the secretory activity of the harderian gland of the green frog, Rana esculenta. Comparative Biochemistry and Physiology A, Comparative Physiology, 1990, 95, 249-252.	0.6	19
123	Regulation of primary spermatogonial proliferation in the frog (<i>Rana esculenta</i>): an experimental analysis. Journal of Zoology, 1990, 220, 201-211.	1.7	19
124	Seasonal fluctuations of estrogen-binding activity in the testis of the frog, Rana esculenta. General and Comparative Endocrinology, 1989, 75, 157-161.	1.8	21
125	Intratesticular feedback mechanisms in the regulation of steroid profiles in the frog, Rana esculenta. General and Comparative Endocrinology, 1989, 75, 335-342.	1.8	53
126	Molecular forms of immunoreactive gonadotropin-releasing hormone in hypothalamus and testis of the frog, Rana esculenta. General and Comparative Endocrinology, 1989, 75, 343-348.	1.8	49

#	Article	IF	CITATIONS
127	Effects of intratesticular injections of estradiol and gonadotropin-releasing hormone (GnRHA, HOE) Tj ETQq1 1 ocellata. General and Comparative Endocrinology, 1989, 75, 349-354.	. 0.784314 i 1.8	rgBT /Overloc 28
128	A gonadotropin releasing hormone analog induces spermiation in intact and hypophysectomized frogs,Rana esculenta. Experientia, 1989, 45, 1118-1121.	1.2	31
129	A sexual dimorphism of the harderian gland of the toad, Bufo viridis. Basic and Applied Histochemistry, 1989, 33, 299-310.	0.1	8
130	The harderian gland of the frog, Rana esculenta, during the annual cycle: histology, histochemistry and ultrastructure. Basic and Applied Histochemistry, 1989, 33, 93-112.	0.1	9
131	Relationship between estradiol-17β seasonal profile and annual vitellogenin content of liver, fat body, plasma, and ovary in the frog (Rana esculenta). General and Comparative Endocrinology, 1988, 69, 328-334.	1.8	15
132	Hypothalamus-hypophysis and testicular GnRH control of gonadal activity in the frog, Rana esculenta: Seasonal GnRH profiles and annual variations of in vitro androgen output by pituitary-stimulated testes. General and Comparative Endocrinology, 1988, 70, 31-40.	1.8	30
133	Fat body involvement in vitellogenin fate in the green frog, Rana esculenta. Comparative Biochemistry and Physiology A, Comparative Physiology, 1988, 91, 175-178.	0.6	2
134	A Gonadotropin-Releasing Hormone (GnRH) Antagonist Decreases Androgen Production and Spermatogonial Multiplication in Frog (Rana esculenta): Indirect Evidence for the Existence of GnRH or GnRH-Like Material Receptors in the Hypophysis and Testis*. Endocrinology, 1988, 122, 62-67.	2.8	43
135	Circadian variation in mitotic index of primary spermatogonia in the adult frog(Rana esculenta). Bollettino Di Zoologia, 1987, 54, 87-89.	0.3	5
136	Seasonal plasma and intraovarian sex steroid profiles, and influence of temperature on gonadotropin stimulation of in vitro estradiol-17β and progesterone production, in Rana esculenta (Amphibia: Anura). General and Comparative Endocrinology, 1987, 67, 163-168.	1.8	16
137	<i>In vitro</i> GnRHa (HOE766) effects on ovarian steroidâ€output in non mammalian vertebrates. Bollettino Di Zoologia, 1986, 53, 381-383.	0.3	6
138	Plasma and testicular estradiol and plasma androgen profile in the male frog Rana esculenta during the annual cycle. General and Comparative Endocrinology, 1986, 64, 401-404.	1.8	62
139	Regulation of androgen production by frog (Rana esculenta) testis: An in vitro study on the effects exerted by estradiol, 5α-dihydrotestosterone, testosterone, melatonin, and serotonin. General and Comparative Endocrinology, 1986, 64, 405-410.	1.8	38
140	<i>In Vivo</i> and <i>in Vitro</i> Stimulatory Effect of a Gonadotropin-Releasing Hormone Analog (HOE) Tj ETQ	q0 0.0 rgBT 2.8	/Oygrlock 10
141	Effect of temperature and darkness on testosterone concentration in the testes of intact frogs (Rana) Tj ETQq Endocrinology, 1985, 58, 128-130.	1 1 0.78431 1.8	14 rgBT /Overl 14
142	Morphology and cell population kinetics of primary spermatogonia in the frog (<i>Rana esculenta</i>) (Amphibia: Anura). Journal of Zoology, 1985, 207, 319-330.	1.7	24
143	Stimulatory effect of a GnRH agonist (buserelin) in in vitro and in vivo testosterone production by the frog (Rana esculenta) testis. Molecular and Cellular Endocrinology, 1984, 38, 215-219.	3.2	73
144	Ovarian activity and reproduction in the frog, Rana esculenta. Journal of Zoology, 1983, 200, 233-247.	1.7	67

#	Article	IF	CITATIONS
145	The control of the frog (Rana esculenta) thumb pad. Experientia, 1982, 38, 134-135.	1.2	14
146	Influence of photoperiodism on high temperature-induced testicular recrudescence in the green frog. Experientia, 1981, 37, 149-150.	1.2	2