
Xiaowei Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells. Science Bulletin, 2022, 67, 171-177.	4.3	20
2	Printing fabrication of large-area non-fullerene organic solar cells. Materials Horizons, 2022, 9, 194-219.	6.4	65
3	Effect of Molecular Symmetry on Fusedâ€Ring Electron Acceptors. Solar Rrl, 2022, 6, 2100797.	3.1	3
4	Enhancing organic photovoltaic performance with 3D-transport dual nonfullerene acceptors. Journal of Materials Chemistry A, 2022, 10, 1948-1955.	5.2	11
5	Perylene Diimide-Based Oligomers and Polymers for Organic Optoelectronics. Accounts of Materials Research, 2022, 3, 309-318.	5.9	58
6	Pushing the Efficiency of High Open ircuit Voltage Binary Organic Solar Cells by Vertical Morphology Tuning. Advanced Science, 2022, 9, e2200578.	5.6	51
7	Revealing the Sole Impact of Acceptor's Molecular Conformation to Energy Loss and Device Performance of Organic Solar Cells through Positional Isomers. Advanced Science, 2022, 9, e2103428.	5.6	9
8	From Perylene Diimide Polymers to <scp>Fusedâ€Ring</scp> Electron Acceptors: A <scp>15â€Year</scp> Exploration Journey of Nonfullerene Acceptors. Chinese Journal of Chemistry, 2022, 40, 1592-1607.	2.6	25
9	Reducing Energy Disorder in Perovskite Solar Cells by Chelation. Journal of the American Chemical Society, 2022, 144, 5400-5410.	6.6	72
10	Towards High-Performance Semitransparent Organic Photovoltaics: Dual-Functional <i>p</i> -Type Soft Interlayer. ACS Nano, 2022, 16, 1231-1238.	7.3	12
11	lcing on the cake: combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Science China Chemistry, 2022, 65, 1134-1141.	4.2	24
12	Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor. Nature Communications, 2022, 13, .	5.8	66
13	Fused-Ring Electron Acceptors for Photovoltaics and Beyond. Accounts of Chemical Research, 2021, 54, 132-143.	7.6	264
14	Effects of π-Bridge on Fused-Ring Electron Acceptor Dimers. ACS Applied Polymer Materials, 2021, 3, 23-29.	2.0	9
15	Advances in Organic Photovoltaics. Acta Chimica Sinica, 2021, 79, 257.	0.5	28
16	Unveiling the crystalline packing of Y6 in thin films by thermally induced "backbone-on―orientation. Journal of Materials Chemistry A, 2021, 9, 17030-17038.	5.2	22
17	Structural regulation of thiophene-fused benzotriazole as a "ï€-bridge―for A-ï€-D-ï€-A type acceptor:P3HT-based OSCs to achieve high efficiency. Journal of Materials Chemistry A, 2021, 9, 6520-6528.	5.2	21
18	Enhancing photovoltaic performance via aggregation dynamics control in fusedâ€ring electron acceptor. Aggregate, 2021, 2, e29.	5.2	10

#	Article	IF	CITATIONS
19	Precise Synthesis of Fused Decacyclic Electron Acceptor Isomers for Organic Solar Cells. Solar Rrl, 2021, 5, 2100163.	3.1	8
20	Fast Response Organic Tandem Photodetector for Visible and Nearâ€Infrared Digital Optical Communications. Small, 2021, 17, e2101316.	5.2	49
21	A Novel, Weakly Nâ€Doped Cathodeâ€Modifying Layer in Organic Solar Cells. Energy Technology, 2021, 9, 2100281.	1.8	10
22	Photophysical pathways in efficient bilayer organic solar cells: The importance of interlayer energy transfer. Nano Energy, 2021, 84, 105924.	8.2	33
23	Effects of Side Chains in Third Components on the Performance of Fused-Ring Electron-Acceptor-Based Ternary Organic Solar Cells. Energy & Fuels, 2021, 35, 19055-19060.	2.5	9
24	Pyrrolo[3,2-b]pyrrole-based fused-ring electron acceptors with strong near-infrared absorption beyond 1000Anm. Dyes and Pigments, 2021, 195, 109705.	2.0	4
25	Isomeric Effect in Unidirectionally Extended Fused-Ring Electron Acceptors. Chemistry of Materials, 2021, 33, 441-451.	3.2	6
26	Uncovering the out-of-plane nanomorphology of organic photovoltaic bulk heterojunction by GTSAXS. Nature Communications, 2021, 12, 6226.	5.8	23
27	ITCâ€⊋Cl: A Versatile Middleâ€Bandgap Nonfullerene Acceptor for Highâ€Efficiency Panchromatic Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900377.	3.1	29
28	Designing a thiophene-fused quinoxaline unit to build D–A copolymers for non-fullerene organic solar cells. Dyes and Pigments, 2020, 174, 108022.	2.0	9
29	Color and transparency-switchable semitransparent polymer solar cells towards smart windows. Science Bulletin, 2020, 65, 217-224.	4.3	60
30	High-performance NIR-sensitive fused tetrathienoacene electron acceptors. Journal of Materials Chemistry A, 2020, 8, 3011-3017.	5.2	18
31	Film-depth-dependent crystallinity for light transmission and charge transport in semitransparent organic solar cells. Journal of Materials Chemistry A, 2020, 8, 401-411.	5.2	45
32	Passivated Metal Oxide n-Type Contacts for Efficient and Stable Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 1111-1118.	2.5	26
33	Charge separation boosts exciton diffusion in fused ring electron acceptors. Journal of Materials Chemistry A, 2020, 8, 23304-23312.	5.2	18
34	Reducing Voltage Losses in the A-DA′D-A Acceptor-Based Organic Solar Cells. CheM, 2020, 6, 2147-2161.	5.8	150
35	Fused-ring electron acceptors in China. Science China Chemistry, 2020, 63, 1179-1181.	4.2	11
36	Butterfly Effects Arising from Starting Materials in Fused-Ring Electron Acceptors. Journal of the American Chemical Society, 2020, 142, 20124-20133.	6.6	87

#	Article	IF	CITATIONS
37	Effects of Fluorination Position on Fusedâ€Ring Electron Acceptors. Small Structures, 2020, 1, 2000006.	6.9	8
38	Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 5117-5125.	15.6	93
39	Ternary Blending Driven Molecular Reorientation of Non-Fullerene Acceptor IDIC with Backbone Order. ACS Applied Energy Materials, 2020, 3, 10814-10822.	2.5	15
40	Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor. ACS Applied Materials & amp; Interfaces, 2020, 12, 50660-50667.	4.0	16
41	Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 43984-43991.	4.0	19
42	Transparent Holeâ€Transporting Frameworks: A Unique Strategy to Design Highâ€Performance Semitransparent Organic Photovoltaics. Advanced Materials, 2020, 32, e2003891.	11.1	60
43	Side-Chain Engineering of Benzodithiophene-Bridged Dimeric Porphyrin Donors for All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 41506-41514.	4.0	30
44	Enabling Highâ€Performance Tandem Organic Photovoltaic Cells by Balancing the Front and Rear Subcells. Advanced Materials, 2020, 32, e2002315.	11.1	25
45	Reducing <scp><i>V</i>_{OC}</scp> loss via structure compatible and high <scp>lowest unoccupied molecular orbital</scp> nonfullerene acceptors for over 17%â€efficiency ternary organic photovoltaics. EcoMat, 2020, 2, e12061.	6.8	23
46	Transparent Solar Cells: Light Harvesting at Oblique Incidence Decoupled from Transmission in Organic Solar Cells Exhibiting 9.8% Efficiency and 50% Visible Light Transparency (Adv. Energy Mater.) Tj ETQq0	0 01.00gBT /	Overlock 10
47	Effects of alkoxylation position on fused-ring electron acceptors. Journal of Materials Chemistry C, 2020, 8, 15128-15134.	2.7	8
48	Highly Conjugated, Fused-Ring, Quadrupolar Organic Chromophores with Large Two-Photon Absorption Cross-Sections in the Near-Infrared. Journal of Physical Chemistry A, 2020, 124, 4367-4378.	1.1	20
49	Highâ€Performance Nonfullerene Organic Solar Cells with Unusual Inverted Structure. Solar Rrl, 2020, 4, 2000115.	3.1	21
50	Highâ€Efficiency Perovskite Quantum Dot Hybrid Nonfullerene Organic Solar Cells with Nearâ€Zero Driving Force. Advanced Materials, 2020, 32, e2002066.	11.1	46
51	An Alkoxyâ€Solubilizing Decacyclic Electron Acceptor for Efficient Ecofriendly Asâ€Cast Bladeâ€Coated Organic Solar Cells. Solar Rrl, 2020, 4, 2000108.	3.1	11
52	Light Harvesting at Oblique Incidence Decoupled from Transmission in Organic Solar Cells Exhibiting 9.8% Efficiency and 50% Visible Light Transparency. Advanced Energy Materials, 2020, 10, 1904196.	10.2	46
53	High-Sensitivity Visible–Near Infrared Organic Photodetectors Based on Non-Fullerene Acceptors. ACS Applied Materials & Interfaces, 2020, 12, 17769-17775.	4.0	44
54	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117

#	Article	lF	CITATIONS
55	Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light: Science and Applications, 2020, 9, 31.	7.7	372
56	Effects of linking units on fused-ring electron acceptor dimers. Journal of Materials Chemistry A, 2020, 8, 13735-13741.	5.2	8
57	Enhancing Performance of Fused-Ring Electron Acceptor Using Pyrrole Instead of Thiophene. ACS Applied Materials & Interfaces, 2020, 12, 14029-14036.	4.0	25
58	Recent progress of all-polymer solar cells – From chemical structure and device physics to photovoltaic performance. Materials Science and Engineering Reports, 2020, 140, 100542.	14.8	75
59	Comparison of Fused-Ring Electron Acceptors with One- and Multidimensional Conformations. ACS Applied Materials & Interfaces, 2020, 12, 23976-23983.	4.0	10
60	A thiophene-fused benzotriazole unit as a "π-bridge―in A-π-D-π-A type acceptor to achieve more balanced JSC and VOC for OSCs. Organic Electronics, 2020, 82, 105705.	1.4	10
61	Constructing Highâ€Performance Organic Photovoltaics via Emerging Nonâ€Fullerene Acceptors and Tandemâ€Junction Structure. Advanced Energy Materials, 2020, 10, 2000746.	10.2	41
62	Integrated Perovskite/Organic Photovoltaics with Ultrahigh Photocurrent and Photoresponse Approaching 1000 nm. Solar Rrl, 2020, 4, 2000140.	3.1	19
63	Highâ€Performance Fluorinated Fusedâ€Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport. Advanced Materials, 2020, 32, e2000645.	11.1	122
64	Comparison of Linear- and Star-Shaped Fused-Ring Electron Acceptors. , 2019, 1, 367-374.		43
65	Molecular Tuning of Titanium Complexes with Controllable Work Function for Efficient Organic Photovoltaics. Journal of Physical Chemistry C, 2019, 123, 20800-20807.	1.5	4
66	Z-Shaped Fused-Chrysene Electron Acceptors for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2019, 11, 33006-33011.	4.0	18
67	Facile synthesis of high-performance nonfullerene acceptor isomers <i>via</i> a one stone two birds strategy. Journal of Materials Chemistry A, 2019, 7, 20667-20674.	5.2	19
68	Utilizing Difluorinated Thiophene Units To Improve the Performance of Polymer Solar Cells. Macromolecules, 2019, 52, 6523-6532.	2.2	14
69	Enhancing the <i>J</i> _{SC} of P3HT-Based OSCs via a Thiophene-Fused Aromatic Heterocycle as a "l€-Bridge―for Aâ^'ï€â€"Dâ^'ï€â€"A-Type Acceptors. ACS Applied Materials & Interfaces, 2019, 11, 26005-26016.	4.0	19
70	Highly Transparent Organic Solar Cells with Allâ€Nearâ€Infrared Photoactive Materials. Small Methods, 2019, 3, 1900424.	4.6	55
71	Black Phosphorous Quantum Dots Sandwiched Organic Solar Cells. Small, 2019, 15, e1903977.	5.2	41
72	Enhancing the Performance of a Fused-Ring Electron Acceptor by Unidirectional Extension. Journal of the American Chemical Society, 2019, 141, 19023-19031.	6.6	136

#	Article	IF	CITATIONS
73	Fused octacyclic electron acceptor isomers for organic solar cells. Journal of Materials Chemistry A, 2019, 7, 21432-21437.	5.2	26
74	High-performance organic solar cells based on polymer donor/small molecule donor/nonfullerene acceptor ternary blends. Journal of Materials Chemistry A, 2019, 7, 2268-2274.	5.2	42
75	New roles of fused-ring electron acceptors in organic solar cells. Journal of Materials Chemistry A, 2019, 7, 4766-4770.	5.2	5
76	Pairing 1D/2D-conjugation donors/acceptors towards high-performance organic solar cells. Materials Chemistry Frontiers, 2019, 3, 276-283.	3.2	9
77	Non-fullerene acceptors inaugurating a new era of organic photovoltaic research and technology. Materials Chemistry Frontiers, 2019, 3, 180-180.	3.2	19
78	Nonfullerene nâ€Type Organic Semiconductors for Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900860.	10.2	63
79	Rylene Diimide Electron Acceptors for Organic Solar Cells. Trends in Chemistry, 2019, 1, 869-881.	4.4	66
80	Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 3473-3480.	2.1	26
81	Nonfullerene All-Small-Molecule Organic Solar Cells. ACS Energy Letters, 2019, 4, 1241-1250.	8.8	151
82	Modulating morphology via side-chain engineering of fused ring electron acceptors for high performance organic solar cells. Science China Chemistry, 2019, 62, 790-796.	4.2	26
83	Ternary Organic Solar Cells with Small Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 1196-1203.	8.8	101
84	The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Research, 2019, 12, 2400-2405.	5.8	28
85	Impact of an electron withdrawing group on the thiophene-fused benzotriazole unit on the photovoltaic performance of the derived polymer solar cells. Dyes and Pigments, 2019, 166, 381-389.	2.0	11
86	High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films. Journal of the American Chemical Society, 2019, 141, 6922-6929.	6.6	177
87	Inverse Optical Cavity Design for Ultrabroadband Light Absorption Beyond the Conventional Limit in Lowâ€Bandgap Nonfullerene Acceptor–Based Solar Cells. Advanced Energy Materials, 2019, 9, 1900463.	10.2	24
88	Assessing the energy offset at the electron donor/acceptor interface in organic solar cells through radiative efficiency measurements. Energy and Environmental Science, 2019, 12, 3556-3566.	15.6	69
89	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	5.2	107
90	Fused thienobenzene-thienothiophene electron acceptors for organic solar cells. Journal of Energy Chemistry, 2019, 37, 58-65.	7.1	7

#	Article	IF	CITATIONS
91	High-Performance Mid-Bandgap Fused-Pyrene Electron Acceptor. Chemistry of Materials, 2019, 31, 6484-6490.	3.2	40
92	Unraveling Sunlight by Transparent Organic Semiconductors toward Photovoltaic and Photosynthesis. ACS Nano, 2019, 13, 1071-1077.	7.3	134
93	High-Performance Fullerene-Free Polymer Solar Cells Featuring Efficient Photocurrent Generation from Dual Pathways and Low Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 8-16.	8.8	62
94	Efficient Quaternary Organic Solar Cells with Parallelâ€Alloy Morphology. Advanced Functional Materials, 2019, 29, 1806804.	7.8	53
95	Efficient Tandem Organic Photovoltaics with Tunable Rear Sub-cells. Joule, 2019, 3, 432-442.	11.7	65
96	Designing an Organic Acceptor with Unsymmetrical Structure Based on Rhodanine and Thiazolidine-2, 4-dione Units to Study the Structure–Property Relationship. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 257-267.	2.2	3
97	Effects of Terminal Groups in Third Components on Performance of Organic Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 275-283.	2.2	3
98	Enhancing the Performance of Polymer Solar Cells via Core Engineering of NIRâ€Absorbing Electron Acceptors. Advanced Materials, 2018, 30, e1706571.	11.1	309
99	Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.	11.1	172
100	A new perspective for organic solar cells: triplet nonfullerene acceptors. Science China Chemistry, 2018, 61, 637-638.	4.2	3
101	Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics, 2018, 12, 131-142.	15.6	1,535
102	Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 9587-9594.	4.0	25
103	A new random D-A copolymer based on two different benzotriazole units as co-acceptors for polymer solar cells. Polymer, 2018, 139, 123-129.	1.8	4
104	Non-fullerene acceptors for organic solar cells. Nature Reviews Materials, 2018, 3, .	23.3	2,163
105	Polymer Solar Cells with 90% External Quantum Efficiency Featuring an Ideal Light―and Chargeâ€Manipulation Layer. Advanced Materials, 2018, 30, e1706083.	11.1	76
106	Enhancing the performance of the electron acceptor ITIC-Th <i>via</i> tailoring its end groups. Materials Chemistry Frontiers, 2018, 2, 537-543.	3.2	46
107	Fused Tris(thienothiophene)â€Based Electron Acceptor with Strong Nearâ€Infrared Absorption for Highâ€Performance As ast Solar Cells. Advanced Materials, 2018, 30, 1705969.	11.1	340
108	Ternary System with Controlled Structure: A New Strategy toward Efficient Organic Photovoltaics. Advanced Materials, 2018, 30, 1705243.	11.1	105

#	Article	IF	CITATIONS
109	n-Type organic light-emitting transistors with high mobility and improved air stability. Journal of Materials Chemistry C, 2018, 6, 535-540.	2.7	21
110	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313.	3.2	74
111	Small molecule donors based on benzodithiophene and diketopyrrolopyrrole compatible with both fullerene and non-fullerene acceptors. Journal of Materials Chemistry C, 2018, 6, 5843-5848.	2.7	22
112	Morphology Control in Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1703147.	10.2	424
113	Fusedâ€Ring Electron Acceptor ITICâ€Th: A Novel Stabilizer for Halide Perovskite Precursor Solution. Advanced Energy Materials, 2018, 8, 1703399.	10.2	112
114	Narrow bandgap non-fullerene acceptor based on a thiophene-fused benzothiadiazole unit with a high short-circuit current density of over 20 mA cm ^{â^'2} . Journal of Materials Chemistry A, 2018, 6, 6393-6401.	5.2	59
115	Bayâ€annulated indigo based nearâ€infrared sensitive polymer for organic solar cells. Journal of Polymer Science Part A, 2018, 56, 213-220.	2.5	6
116	Naphthodithiopheneâ€Based Nonfullerene Acceptor for Highâ€Performance Organic Photovoltaics: Effect of Extended Conjugation. Advanced Materials, 2018, 30, 1704713.	11.1	199
117	Enhancing the performance of a fused-ring electron acceptor <i>via</i> extending benzene to naphthalene. Journal of Materials Chemistry C, 2018, 6, 66-71.	2.7	38
118	Breaking 10% Efficiency in Semitransparent Solar Cells with Fused-Undecacyclic Electron Acceptor. Chemistry of Materials, 2018, 30, 239-245.	3.2	167
119	NIR polymers and phototransistors. Journal of Materials Chemistry C, 2018, 6, 13049-13058.	2.7	25
120	High-performance ternary organic solar cells with photoresponses beyond 1000 nm. Journal of Materials Chemistry A, 2018, 6, 24210-24215.	5.2	31
121	Fullerene derivative anchored SnO ₂ for high-performance perovskite solar cells. Energy and Environmental Science, 2018, 11, 3463-3471.	15.6	205
122	Fluorinated Thieno[2′,3′:4,5]benzo[1,2- <i>d</i>][1,2,3]triazole: New Acceptor Unit To Construct Polymer Donors. ACS Omega, 2018, 3, 13894-13901.	1.6	7
123	Achieving Balanced Crystallinity of Donor and Acceptor by Combining Bladeâ€Coating and Ternary Strategies in Organic Solar Cells. Advanced Materials, 2018, 30, e1805041.	11.1	131
124	High-Performance Fused Ring Electron Acceptor–Perovskite Hybrid. Journal of the American Chemical Society, 2018, 140, 14938-14944.	6.6	71
125	Dual-Accepting-Unit Design of Donor Material for All-Small-Molecule Organic Solar Cells with Efficiency Approaching 11%. Chemistry of Materials, 2018, 30, 8661-8668.	3.2	101
126	Convenient fabrication of conjugated polymer semiconductor nanotubes and their application in organic electronics. Royal Society Open Science, 2018, 5, 180868.	1.1	2

#	Article	IF	CITATIONS
127	Unique Energy Alignments of a Ternary Material System toward Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1801501.	11.1	116
128	Nonfullerene Acceptor with "Donor–Acceptor Combined π-Bridge―for Organic Photovoltaics with Large Open-Circuit Voltage. ACS Applied Materials & Interfaces, 2018, 10, 18984-18992.	4.0	33
129	Hidden Structure Ordering Along Backbone of Fusedâ€Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction. Advanced Materials, 2018, 30, e1802888.	11.1	212
130	Effect of Core Size on Performance of Fused-Ring Electron Acceptors. Chemistry of Materials, 2018, 30, 5390-5396.	3.2	102
131	Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors. Journal of the American Chemical Society, 2018, 140, 9140-9147.	6.6	361
132	Enhancing the performance of non-fullerene organic solar cells <i>via</i> end group engineering of fused-ring electron acceptors. Journal of Materials Chemistry A, 2018, 6, 16638-16644.	5.2	47
133	Electronâ€Transport Materials in Perovskite Solar Cells. Small Methods, 2018, 2, 1800082.	4.6	136
134	Nonfullerene Acceptors for Semitransparent Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800002.	10.2	160
135	Alkoxy-Induced Near-Infrared Sensitive Electron Acceptor for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 4150-4156.	3.2	79
136	Realizing Small Energy Loss of 0.55 eV, High Openâ€Circuit Voltage >1 V and High Efficiency >10% in Fullereneâ€Free Polymer Solar Cells via Energy Driver. Advanced Materials, 2017, 29, 1605216.	11.1	230
137	Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 1336-1343.	6.6	813
138	Singleâ€Junction Binaryâ€Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials, 2017, 29, 1700144.	11.1	629
139	Rhodanine flanked indacenodithiophene as non-fullerene acceptor for efficient polymer solar cells. Science China Chemistry, 2017, 60, 257-263.	4.2	42
140	Fine-tuning solid state packing and significantly improving photovoltaic performance of conjugated polymers through side chain engineering via random polymerization. Journal of Materials Chemistry A, 2017, 5, 5585-5593.	5.2	20
141	Highâ€Mobility pâ€Type Organic Semiconducting Interlayer Enhancing Efficiency and Stability of Perovskite Solar Cells. Advanced Science, 2017, 4, 1700025.	5.6	36
142	Fused Hexacyclic Nonfullerene Acceptor with Strong Nearâ€Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency. Advanced Materials, 2017, 29, 1701308.	11.1	364
143	Designing a thiophene-fused benzoxadizole as an acceptor to build a narrow bandgap polymer for all-polymer solar cells. RSC Advances, 2017, 7, 19990-19995.	1.7	8
144	π onjugated Lewis Base: Efficient Trapâ€Passivation and Chargeâ€Extraction for Hybrid Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604545.	11.1	543

#	Article	IF	CITATIONS
145	Enhancing performance of non-fullerene organic solar cells via side chain engineering of fused-ring electron acceptors. Dyes and Pigments, 2017, 139, 627-634.	2.0	48
146	A perylene diimide based polymer: a dual function interfacial material for efficient perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 1079-1086.	3.2	51
147	Donor polymer fluorination doubles the efficiency in non-fullerene organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 22536-22541.	5.2	27
148	Fluorinated fused nonacyclic interfacial materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21414-21421.	5.2	59
149	Constructing D–A copolymers based on thiophene-fused benzotriazole units containing different alkyl side-chains for non-fullerene polymer solar cells. Journal of Materials Chemistry C, 2017, 5, 8179-8186.	2.7	19
150	Enhancing Performance of Nonfullerene Acceptors via Side hain Conjugation Strategy. Advanced Materials, 2017, 29, 1702125.	11.1	249
151	Ladder-type nonacyclic indacenodithieno[3,2-b]indole for highly efficient organic field-effect transistors and organic photovoltaics. Journal of Materials Chemistry C, 2017, 5, 8988-8998.	2.7	14
152	A novel hole extraction layer to enhance the performance of inverted organic solar cells. Journal of Materials Chemistry A, 2017, 5, 25385-25390.	5.2	7
153	Enhancing Efficiency and Stability of Organic Solar Cells by UV Absorbent. Solar Rrl, 2017, 1, 1700148.	3.1	21
154	A low temperature processed fused-ring electron transport material for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24820-24825.	5.2	46
155	An amino-substituted perylene diimide polymer for conventional perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 2078-2084.	3.2	26
156	Nonfullerene acceptor with strong near-infrared absorption for polymer solar cells. Dyes and Pigments, 2017, 137, 553-559.	2.0	14
157	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	11.1	360
158	Perylene and naphthalene diimide copolymers for allâ€polymer solar cells: Effect of perylene/naphthalene ratio. Journal of Polymer Science Part A, 2017, 55, 682-689.	2.5	19
159	Spiro[fluorene-9,9′-xanthene]-based hole transporting materials for efficient perovskite solar cells with enhanced stability. Materials Chemistry Frontiers, 2017, 1, 100-110.	3.2	84
160	Efficient Inverted Organic Solar Cells Based on a Fullerene Derivative-Modified Transparent Cathode. Materials, 2017, 10, 1064.	1.3	11
161	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	11.1	155
162	Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Advanced Materials, 2016, 28, 8021-8028.	11.1	207

#	Article	IF	CITATIONS
163	Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells. Advanced Materials, 2016, 28, 5822-5829.	11.1	134
164	Layerâ€by‣ayer Processed Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600414.	10.2	98
165	Nanomaterials for Energy at Peking University. Advanced Energy Materials, 2016, 6, .	10.2	0
166	Efficient and stable organic solar cells via a sequential process. Journal of Materials Chemistry C, 2016, 4, 8086-8093.	2.7	45
167	Highly Sensitive Organic Photodetectors with Tunable Spectral Response under Biâ€Directional Bias. Advanced Optical Materials, 2016, 4, 1711-1717.	3.6	75
168	Effect of Alkyl Side Chains of Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar Cells. Macromolecules, 2016, 49, 6445-6454.	2.2	76
169	Semitransparent, non-fullerene and flexible all-plastic solar cells. Polymer, 2016, 107, 108-112.	1.8	47
170	Nonfullerene Tandem Organic Solar Cells with High Open ircuit Voltage of 1.97 V. Advanced Materials, 2016, 28, 9729-9734.	11.1	104
171	Structure Evolution of Oligomer Fusedâ€Ring Electron Acceptors toward High Efficiency of Asâ€Cast Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600854.	10.2	152
172	Tandem Organic Solar Cells: Nonfullerene Tandem Organic Solar Cells with High Open-Circuit Voltage of 1.97 V (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9870-9870.	11.1	2
173	Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chemical Reviews, 2016, 116, 14675-14725.	23.0	418
174	Polymer Dots of Peryleneimide-Functionalized Polyethyleneimine: Facile Synthesis and Effective Fluorescent Sensing of Iron (III) Ions. Macromolecular Rapid Communications, 2016, 37, 2052-2056.	2.0	12
175	Influence of Thiophene Moiety on the Excited State Properties of Push–Pull Chromophores. Journal of Physical Chemistry C, 2016, 120, 13922-13930.	1.5	14
176	Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems. Journal of Materials Chemistry A, 2016, 4, 1044-1051.	5.2	84
177	High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. Journal of the American Chemical Society, 2016, 138, 4955-4961.	6.6	915
178	Stability of organic solar cells: challenges and strategies. Chemical Society Reviews, 2016, 45, 2544-2582.	18.7	820
179	Cracking perylene diimide backbone for fullerene-free polymer solar cells. Dyes and Pigments, 2016, 128, 226-234.	2.0	18
180	Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response. Nanoscale, 2016, 8, 5578-5586.	2.8	77

#	Article	IF	CITATIONS
181	A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. Journal of the American Chemical Society, 2016, 138, 2973-2976.	6.6	885
182	Organic dyes based on triphenylamine for dye-sensitized solar cells: Structure–property relationships. Journal of Energy Chemistry, 2016, 25, 615-620.	7.1	6
183	Monodisperse macromolecules based on benzodithiophene and diketopyrrolopyrrole with strong NIR absorption and high mobility. Journal of Materials Chemistry C, 2016, 4, 3781-3791.	2.7	22
184	Efficient fullerene-free organic solar cells based on fused-ring oligomer molecules. Journal of Materials Chemistry A, 2016, 4, 1486-1494.	5.2	48
185	Electron-transporting third component modifying cathode for simplified inverted ternary blend solar cells. Journal of Materials Chemistry C, 2016, 4, 1051-1056.	2.7	20
186	Oligomer Molecules for Efficient Organic Photovoltaics. Accounts of Chemical Research, 2016, 49, 175-183.	7.6	560
187	Rollâ€Coated Fabrication of Fullereneâ€Free Organic Solar Cells with Improved Stability. Advanced Science, 2015, 2, 1500096.	5.6	89
188	Designing Efficient Nonâ€Fullerene Acceptors by Tailoring Extended Fusedâ€Rings with Electronâ€Deficient Groups. Advanced Energy Materials, 2015, 5, 1501063.	10.2	203
189	Conformation Diversity of a Fusedâ€Ring Pyrazine Derivative on Au(111) and Highly Ordered Pyrolytic Graphite. Chemistry - an Asian Journal, 2015, 10, 1311-1317.	1.7	7
190	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.	1.9	34
191	Perylene and naphthalene diimide polymers for all-polymer solar cells: a comparative study of chemical copolymerization and physical blend. Polymer Chemistry, 2015, 6, 5254-5263.	1.9	47
192	An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Advanced Materials, 2015, 27, 1170-1174.	11.1	3,365
193	Effect of electron-withdrawing units on triphenylamine-based small molecules for solution-processed organic solar cells. Science China Chemistry, 2015, 58, 331-338.	4.2	6
194	Highly sensitive thin film phototransistors based on a copolymer of benzodithiophene and diketopyrrolopyrrole. Journal of Materials Chemistry C, 2015, 3, 1942-1948.	2.7	26
195	Designing a thiophene-fused DPP unit to build an A–D–A molecule for solution-processed solar cells. Journal of Materials Chemistry A, 2015, 3, 6894-6900.	5.2	28
196	Enhancing the organic thin-film transistor performance of diketopyrrolopyrrole–benzodithiophene copolymers via the modification of both conjugated backbone and side chain. Polymer Chemistry, 2015, 6, 5369-5375.	1.9	20
197	Spirobifluorene-based acceptors for polymer solar cells: Effect of isomers. Dyes and Pigments, 2015, 123, 16-25.	2.0	16
198	Conjugated polymers with deep LUMO levels for field-effect transistors and polymer–polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 8255-8261.	2.7	23

#	Article	IF	CITATIONS
199	Diluting concentrated solution: a general, simple and effective approach to enhance efficiency of polymer solar cells. Energy and Environmental Science, 2015, 8, 2357-2364.	15.6	80
200	Versatile third components for efficient and stable organic solar cells. Materials Horizons, 2015, 2, 462-485.	6.4	168
201	Oligothiophene-bridged perylene diimide dimers for fullerene-free polymer solar cells: effect of bridge length. Journal of Materials Chemistry A, 2015, 3, 13000-13010.	5.2	45
202	Low-bandgap thieno[3,4-c]pyrrole-4,6-dione-polymers for high-performance solar cells with significantly enhanced photocurrents. Journal of Materials Chemistry A, 2015, 3, 11194-11198.	5.2	35
203	Roll-coating fabrication of ITO-free flexible solar cells based on a non-fullerene small molecule acceptor. RSC Advances, 2015, 5, 36001-36006.	1.7	25
204	A planar electron acceptor for efficient polymer solar cells. Energy and Environmental Science, 2015, 8, 3215-3221.	15.6	307
205	Comparison of conventional and inverted structures in fullerene-free organic solar cells. Journal of Energy Chemistry, 2015, 24, 744-749.	7.1	20
206	Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolylmethylenemalononitrile for polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 20758-20766.	5.2	88
207	An electron acceptor based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone for fullerene-free organic solar cells. Journal of Materials Chemistry A, 2015, 3, 1910-1914.	5.2	137
208	High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy and Environmental Science, 2015, 8, 610-616.	15.6	587
209	Perylene diimide–thienylenevinylene-based small molecule and polymer acceptors for solution-processed fullerene-free organic solarÂcells. Dyes and Pigments, 2015, 114, 283-289.	2.0	28
210	Synthesis of an octathienyl-fused phthalocyanine as a donor material for organic solar cells. Dyes and Pigments, 2015, 114, 124-128.	2.0	7
211	Layer by layer solution processed organic solar cells based on a small molecule donor and a polymer acceptor. Journal of Materials Chemistry C, 2015, 3, 447-452.	2.7	35
212	Ternary Blend Organic Solar Cells Based on P3HT/TT-TTPA/PC ₆₁ BM. Acta Chimica Sinica, 2015, 73, 252.	0.5	12
213	Triple stimuli-responsive polymers based on pyrene-functionalized poly(dimethylaminoethyl) Tj ETQq1 1 0.78431 Science, 2014, 292, 2735-2744.	4 rgBT /Ov 1.0	verlock 10 9
214	Copolymers of benzo[1,2-b:4,5-b′]dithiophene and bithiazole for high-performance thin film phototransistors. Journal of Materials Chemistry C, 2014, 2, 9505-9511.	2.7	25
215	Triple stimuli-responsive crosslinked polymeric nanoparticles for controlled release. RSC Advances, 2014, 4, 35757.	1.7	22
216	Solar Cells: A Star‣haped Perylene Diimide Electron Acceptor for Highâ€Performance Organic Solar Cells (Adv. Mater. 30/2014). Advanced Materials, 2014, 26, 5224-5224.	11.1	3

#	Article	IF	CITATIONS
217	Smallâ€Molecule Solar Cells with Fill Factors up to 0.75 via a Layerâ€byâ€Layer Solution Process. Advanced Energy Materials, 2014, 4, 1300626.	10.2	90
218	A diketopyrrolopyrrole molecule end-capped with a furan-2-carboxylate moiety: the planarity of molecular geometry and photovoltaic properties. Journal of Materials Chemistry A, 2014, 2, 6589.	5.2	42
219	Layerâ€byâ€Layer Solutionâ€Processed Lowâ€Bandgap Polymerâ€PC ₆₁ BM Solar Cells with High Efficiency. Advanced Energy Materials, 2014, 4, 1301349.	10.2	57
220	Acceptor–Donor–Acceptor Small Molecules Based on Indacenodithiophene for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 8426-8433.	4.0	135
221	A Twisted Dimeric Perylene Diimide Electron Acceptor for Efficient Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400420.	10.2	126
222	Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy and Environmental Science, 2014, 7, 1351-1356.	15.6	224
223	A bipolar small molecule based on indacenodithiophene and diketopyrrolopyrrole for solution processed organic solar cells. Journal of Materials Chemistry A, 2014, 2, 778-784.	5.2	87
224	Solvent-resistant small molecule solar cells by roll-to-roll fabrication via introduction of azide cross-linkable group. Synthetic Metals, 2014, 195, 299-305.	2.1	10
225	Polymer Nanoparticles for Controlled Release Stimulated by Visible Light and pH. Macromolecular Rapid Communications, 2014, 35, 1255-1259.	2.0	35
226	Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%. Journal of Materials Chemistry A, 2014, 2, 19809-19814.	5.2	44
227	Fluorescence Detection of DNA Hybridization Based on the Aggregation-Induced Emission of a Perylene-Functionalized Polymer. ACS Applied Materials & Interfaces, 2014, 6, 11136-11141.	4.0	35
228	Towards high-efficiency non-fullerene organic solar cells: Matching small molecule/polymer donor/acceptor. Organic Electronics, 2014, 15, 2270-2276.	1.4	53
229	Worldwide outdoor round robin study of organic photovoltaic devices and modules. Solar Energy Materials and Solar Cells, 2014, 130, 281-290.	3.0	23
230	Comparison of additive amount used in spin-coated and roll-coated organic solar cells. Journal of Materials Chemistry A, 2014, 2, 19542-19549.	5.2	36
231	Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy and Environmental Science, 2014, 7, 2005.	15.6	275
232	Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Materials Horizons, 2014, 1, 470.	6.4	694
233	A Starâ€Shaped Perylene Diimide Electron Acceptor for Highâ€Performance Organic Solar Cells. Advanced Materials, 2014, 26, 5137-5142.	11.1	390
234	N-acylated isoindigo based conjugated polymers for n-channel and ambipolar organic thin-film transistors. Dyes and Pigments, 2014, 109, 200-205.	2.0	15

#	Article	IF	CITATIONS
235	All-polymer solar cells based on side-chain-isolated polythiophenes and poly(perylene) Tj ETQq1 1 0.784314 rgBT	/Qverlock	10 _. Tf 50 74
236	Selfâ€Assembled Ï€â€Extended Condensed Benzothiophene Nanoribbons for Fieldâ€Effect Transistors. Chemistry - A European Journal, 2013, 19, 9771-9774.	1.7	15
237	Multi-responsive nitrobenzene-based amphiphilic random copolymer assemblies. Chemical Communications, 2013, 49, 3516.	2.2	62
238	Multiple stimuli-responsive polymeric micelles for controlled release. Soft Matter, 2013, 9, 370-373.	1.2	104
239	High-mobility, air stable bottom-contact n-channel thin film transistors based on <i>N,N</i> ′-ditridecyl perylene diimide. Applied Physics Letters, 2013, 103, .	1.5	18
240	Effect of the Longer β-Unsubstituted Oliogothiophene Unit (6T and 7T) on the Organic Thin-Film Transistor Performances of Diketopyrrolopyrrole-Oliogothiophene Copolymers. Chemistry of Materials, 2013, 25, 4290-4296.	3.2	49
241	Ambient roll-to-roll fabrication of flexible solar cells based on small molecules. Journal of Materials Chemistry C, 2013, 1, 8007.	2.7	59
242	One, two and three-branched triphenylamine–oligothiophene hybrids for solution-processed solar cells. Journal of Materials Chemistry A, 2013, 1, 5128.	5.2	41
243	A star-shaped electron acceptor based on 5,5′-bibenzothiadiazole for solution processed solar cells. Journal of Materials Chemistry A, 2013, 1, 14627.	5.2	38
244	Perylene diimide copolymers with dithienothiophene and dithienopyrrole: Use in nâ€channel and ambipolar fieldâ€effect transistors. Journal of Polymer Science Part A, 2013, 51, 1550-1558.	2.5	19
245	Evolved structure of thiazolothiazole based small molecules towards enhanced efficiency in organic solar cells. Organic Electronics, 2013, 14, 599-606.	1.4	45
246	A D–A–D swivel-cruciform oligothiophene based on 5,5′-bibenzothiadiazole. Journal of Materials Chemistry C, 2013, 1, 414-417.	2.7	12
247	Photoswitches: High Performance Photoswitches Based on Flexible and Amorphous D–A Polymer Nanowires (Small 2/2013). Small, 2013, 9, 166-166.	5.2	2
248	Detection of DNA hybridization by a pyrene-labeled polyelectrolyte prepared byÂATRP. Polymer, 2013, 54, 297-302.	1.8	7
249	A round robin study of polymer solar cells and small modules across China. Solar Energy Materials and Solar Cells, 2013, 117, 382-389.	3.0	10
250	Synthesis and fluorescence study of a pyrene-functionalized poly(4-vinylpyridine) quaternary ammonium for detection of DNA hybridization. Polymer, 2013, 54, 1289-1294.	1.8	9
251	Hybrid molecular nanostructures with donor-acceptor chains. Science China Chemistry, 2013, 56, 124-130.	4.2	8
252	An Acetylene-Containing Perylene Diimide Copolymer for High Mobility n-Channel Transistor in Air. Macromolecules, 2013, 46, 2152-2158.	2.2	66

#	Article	IF	CITATIONS
253	A Solutionâ€Processable Electron Acceptor Based on Dibenzosilole and Diketopyrrolopyrrole for Organic Solar Cells. Advanced Energy Materials, 2013, 3, 724-728.	10.2	161
254	All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells. Solar Energy Materials and Solar Cells, 2013, 112, 157-162.	3.0	80
255	Dithienocoronene diimide based conjugated polymers as electron acceptors for all-polymer solar cells. Solar Energy Materials and Solar Cells, 2013, 112, 13-19.	3.0	35
256	A Solutionâ€Processable Small Molecule Based on Benzodithiophene and Diketopyrrolopyrrole for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1166-1170.	10.2	203
257	The state of organic solar cells—A meta analysis. Solar Energy Materials and Solar Cells, 2013, 119, 84-93.	3.0	154
258	High Performance Nanocrystals of a Donor–Acceptor Conjugated Polymer. Chemistry of Materials, 2013, 25, 2649-2655.	3.2	64
259	High Performance Photoswitches Based on Flexible and Amorphous D–A Polymer Nanowires. Small, 2013, 9, 294-299.	5.2	25
260	A DMF-assisted solution process boosts the efficiency in P3HT:PCBM solar cells up to 5.31%. Nanotechnology, 2013, 24, 484008.	1.3	27
261	Synthesis and Fluorescence Study of a Quaternized Copolymer Containing Pyrene for DNAâ€Hybridization Detection. ChemPhysChem, 2012, 13, 4099-4104.	1.0	8
262	A Low-Bandgap Conjugated Copolymer Based on Porphyrin and Dithienocoronene Diimide with Strong Two-Photon Absorption. Macromolecules, 2012, 45, 7823-7828.	2.2	38
263	Synthesis of a Conjugated Polymer with Broad Absorption and Its Application in High-Performance Phototransistors. Macromolecules, 2012, 45, 1296-1302.	2.2	86
264	A conjugated polymer based on 5,5′-bibenzo[c][1,2,5]thiadiazole for high-performance solar cells. Journal of Materials Chemistry, 2012, 22, 3432.	6.7	19
265	A star-shaped oligothiophene end-capped with alkyl cyanoacetate groups for solution-processed organic solar cells. Chemical Communications, 2012, 48, 9655.	2.2	70
266	An oligothiophene dye with triphenylamine as side chains for efficient dye-sensitized solar cells. Organic Electronics, 2012, 13, 2395-2400.	1.4	12
267	Solvent-vapor induced self-assembly of a conjugated polymer: A correlation between solvent nature and transistor performance. Organic Electronics, 2012, 13, 2372-2378.	1.4	23
268	A 3D star-shaped non-fullerene acceptor for solution-processed organic solar cells with a high open-circuit voltage of 1.18 V. Chemical Communications, 2012, 48, 4773.	2.2	281
269	Synthesis and photovoltaic properties of D–A copolymers of benzodithiophene and naphtho[2,3-c]thiophene-4,9-dione. Polymer Chemistry, 2012, 3, 99-104.	1.9	29
270	An acceptorâ€acceptor conjugated copolymer based on perylene diimide for high mobility <i>n</i> â€channel transistor in air. Journal of Polymer Science Part A, 2012, 50, 4266-4271.	2.5	37

#	Article	IF	CITATIONS
271	Small molecule semiconductors for high-efficiency organic photovoltaics. Chemical Society Reviews, 2012, 41, 4245.	18.7	1,601
272	Conjugated Polymers of Rylene Diimide and Phenothiazine for n-Channel Organic Field-Effect Transistors. Macromolecules, 2012, 45, 4115-4121.	2.2	71
273	Thiazoleâ€Based Organic Semiconductors for Organic Electronics. Advanced Materials, 2012, 24, 3087-3106.	11.1	288
274	Solution-processable small molecules based on thieno[3,4-c]pyrrole-4,6-dione for high-performance solar cells. Solar Energy Materials and Solar Cells, 2012, 99, 301-307.	3.0	30
275	Small molecules based on bithiazole for solution-processed organic solar cells. Organic Electronics, 2012, 13, 673-680.	1.4	36
276	A Solution Processable Dâ€Aâ€Ð Molecule based on Thiazolothiazole for High Performance Organic Solar Cells. Advanced Energy Materials, 2012, 2, 63-67.	10.2	121
277	Physicochemical, self-assembly and field-effect transistor properties of anti- and syn- thienoacene isomers. Journal of Materials Chemistry, 2011, 21, 11335.	6.7	18
278	Electron transporting semiconducting polymers in organic electronics. Chemical Society Reviews, 2011, 40, 3728.	18.7	376
279	A Low-Bandgap Conjugated Polymer Based on Squaraine with Strong Two-Photon Absorption. Macromolecules, 2011, 44, 3759-3765.	2.2	40
280	Synthesis and photovoltaic properties of copolymers of carbazole and thiophene with conjugated side chain containing acceptor end groups. Polymer Chemistry, 2011, 2, 1678.	1.9	37
281	A Copolymer of Benzodithiophene with TIPS Side Chains for Enhanced Photovoltaic Performance. Macromolecules, 2011, 44, 9173-9179.	2.2	61
282	Evolved Phase Separation toward Balanced Charge Transport and High Efficiency in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 3646-3653.	4.0	20
283	Conjugated Polymers Based on a New Building Block: Dithienophthalimide. Macromolecules, 2011, 44, 4213-4221.	2.2	36
284	New X-shaped oligothiophenes for solution-processed solar cells. Journal of Materials Chemistry, 2011, 21, 9667.	6.7	43
285	Side Chain Engineering of Copolymers Based on Bithiazole and Benzodithiophene for Enhanced Photovoltaic Performance. Macromolecules, 2011, 44, 4230-4240.	2.2	88
286	Fluorescence study of interaction between an anionic conjugated polyelectrolyte and bovine serum albumin. Polymer Bulletin, 2011, 67, 1907-1915.	1.7	6
287	Copolymers of fluorene and thiophene with conjugated side chain for polymer solar cells: Effect of pendant acceptors. Journal of Polymer Science Part A, 2011, 49, 1462-1470.	2.5	33
288	Synthesis and photovoltaic properties of copolymers based on bithiophene and bithiazole. Journal of Polymer Science Part A, 2011, 49, 2746-2754.	2.5	20

#	Article	IF	CITATIONS
289	Thiazolothiazoleâ€containing polythiophenes with low HOMO level and high hole mobility for polymer solar cells. Journal of Polymer Science Part A, 2011, 49, 4875-4885.	2.5	25
290	Highâ€Mobility Conjugated Polymers Based on Fusedâ€Thiophene Building Blocks. Macromolecular Chemistry and Physics, 2011, 212, 428-443.	1.1	92
291	Macromol. Chem. Phys. 5/2011. Macromolecular Chemistry and Physics, 2011, 212, .	1.1	0
292	Rylene and Related Diimides for Organic Electronics. Advanced Materials, 2011, 23, 268-284.	11.1	1,548
293	A Solutionâ€Processable Starâ€Shaped Molecule for Highâ€Performance Organic Solar Cells. Advanced Materials, 2011, 23, 1554-1557.	11.1	348
294	A carboxylic acidâ€functionalized polyfluorene as fluorescent probe for protein sensing. Journal of Applied Polymer Science, 2011, 121, 3541-3546.	1.3	8
295	Solution processable D-A-D molecules based on triphenylamine for efficient organic solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 457-464.	3.0	76
296	n‶ype Organic Semiconductors in Organic Electronics. Advanced Materials, 2010, 22, 3876-3892.	11.1	1,077
297	Topâ€Gate Organic Thinâ€Film Transistors Constructed by a General Lamination Approach. Advanced Materials, 2010, 22, 3537-3541.	11.1	47
298	The effect of anchoring group number on the performance of dye-sensitized solar cells. Dyes and Pigments, 2010, 87, 249-256.	2.0	65
299	Waterâ€soluble hyperbranched polyelectrolytes with high fluorescence quantum yield: Facile synthesis and selective chemosensor for Hg ²⁺ and Cu ²⁺ ions. Journal of Polymer Science Part A, 2010, 48, 3431-3439.	2.5	44
300	Efficiency enhancement in small molecule bulk heterojunction organic solar cells via additive. Applied Physics Letters, 2010, 97, .	1.5	59
301	Photophysical Properties of Intramolecular Charge Transfer in Two Newly Synthesized Tribranched Donorâ^'l€â^'Acceptor Chromophores. Journal of Physical Chemistry A, 2010, 114, 7345-7352.	1.1	63
302	Low-Bandgap Conjugated Donorâ^'Acceptor Copolymers Based on Porphyrin with Strong Two-Photon Absorption. Macromolecules, 2010, 43, 9620-9626.	2.2	49
303	Conjugated polymers for high-efficiency organic photovoltaics. Polymer Chemistry, 2010, 1, 409-419.	1.9	292
304	Synthesis of Copolymers Based on Thiazolothiazole and Their Applications in Polymer Solar Cells. Journal of Physical Chemistry C, 2010, 114, 16843-16848.	1.5	64
305	Dynamic Monte Carlo Simulation for Highly Efficient Polymer Blend Photovoltaics. Journal of Physical Chemistry B, 2010, 114, 36-41.	1.2	137
306	Synthesis and Photovoltaic Properties of Bithiazole-Based Donorâ^'Acceptor Copolymers. Macromolecules, 2010, 43, 5706-5712.	2.2	103

#	Article	IF	CITATIONS
307	A fluorescent conjugated polymer for trace detection of diamines and biogenic polyamines. Journal of Materials Chemistry, 2010, 20, 9628.	6.7	72
308	Synthesis, self-assembly, and solution-processed nanoribbon field-effect transistor of a fused-nine-ring thienoacene. Chemical Communications, 2010, 46, 2841.	2.2	35
309	Single crystal ribbons and transistors of a solution processed sickle-like fused-ring thienoacene. Journal of Materials Chemistry, 2010, 20, 6014.	6.7	36
310	Synthesis and Photovoltaic Properties of a Copolymer of Benzo[1,2-b:4,5-b′]dithiophene and Bithiazole. Macromolecules, 2010, 43, 8714-8717.	2.2	56
311	Soluble dithienothiophene polymers: Effect of link pattern. Journal of Polymer Science Part A, 2009, 47, 2843-2852.	2.5	43
312	Low bandgap Ï€â€conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structureâ€property relationship study. Journal of Polymer Science Part A, 2009, 47, 5498-5508.	2.5	100
313	Effect of substituents on electronic properties, thin film structure and device performance of dithienothiophene–phenylene cooligomers. Thin Solid Films, 2009, 517, 2968-2973.	0.8	14
314	Synthesis, electron mobility, and electroluminescence of a polynorbornene-supported silole. Polymer, 2009, 50, 397-403.	1.8	15
315	Synthesis of a soluble conjugated copolymer based on dialkyl-substituted dithienothiophene and its application in photovoltaic cells. Polymer, 2009, 50, 3595-3599.	1.8	24
316	Photoinduced Intramolecular Electron Transfer in Conjugated Perylene Bisimide-Dithienothiophene Systems: A Comparative Study of a Small Molecule and a Polymer. Journal of Physical Chemistry A, 2009, 113, 5039-5046.	1.1	57
317	Synthesis, Self-Assembly and Solution-Processed Field-Effect Transistors of a Liquid Crystalline Bis(dithienothiophene) Derivative. Journal of Physical Chemistry C, 2009, 113, 16232-16237.	1.5	17
318	Hierarchical Assembly of an Achiral π-Conjugated Molecule into a Chiral Nanotube through the Air/Water Interface. Langmuir, 2009, 25, 6633-6636.	1.6	31
319	Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. Journal of Materials Chemistry, 2009, 19, 5794.	6.7	165
320	The photovoltaic behaviors of PPV- and PPE-type conjugated polymers featured with diketopyrrolopyrrole (DPP) units. Synthetic Metals, 2009, 159, 1991-1995.	2.1	14
321	Substituent effects on the electronic structure of siloles. Chemical Communications, 2009, , 1948.	2.2	146
322	Fused-Ring Pyrazine Derivatives for n-Type Field-Effect Transistors. ACS Applied Materials & Interfaces, 2009, 1, 1122-1129.	4.0	44
323	Porphyrinâ^'Dithienothiophene Ï€-Conjugated Copolymers: Synthesis and Their Applications in Field-Effect Transistors and Solar Cells. Macromolecules, 2008, 41, 6895-6902.	2.2	144
324	Fluorenyl-substituted silole molecules: geometric, electronic, optical, and device properties. Journal of Materials Chemistry, 2008, 18, 3157.	6.7	41

#	Article	IF	CITATIONS
325	Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide- <i>alt</i> -bis(dithienothiophene)]. Applied Physics Letters, 2008, 93, .	1.5	123
326	Nanopatterning of Donor/Acceptor Hybrid Supramolecular Architectures on Highly Oriented Pyrolytic Graphite: A Scanning Tunneling Microscopy Study. Journal of the American Chemical Society, 2008, 130, 13433-13441.	6.6	38
327	Highly ordered thin films of a bis(dithienothiophene) derivative. Journal of Materials Chemistry, 2007, 17, 4972.	6.7	29
328	A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells. Journal of the American Chemical Society, 2007, 129, 7246-7247.	6.6	1,110
329	Extended Squaraine Dyes with Large Two-Photon Absorption Cross-Sections. Journal of the American Chemical Society, 2006, 128, 14444-14445.	6.6	205
330	Comparative studies of the geometric and electronic properties of 1,1-disubstituted-2,3,4,5-tetraphenylsiloles and 1,1,2,2-tetramethyl-3,4,5,6-tetraphenyl-1,2-disila-3,5-cyclohexadiene. Journal of Materials Chemistry, 2006, 16, 3814-3822.	6.7	19
331	Electron Affinities of 1,1-Diaryl-2,3,4,5-tetraphenylsiloles:Â Direct Measurements and Comparison with Experimental and Theoretical Estimates. Journal of the American Chemical Society, 2005, 127, 9021-9029.	6.6	155
332	Structures, Electronic States, Photoluminescence, and Carrier Transport Properties of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles. Journal of the American Chemical Society, 2005, 127, 6335-6346.	6.6	490
333	A Highly π-Stacked Organic Semiconductor for Field-Effect Transistors Based on Linearly Condensed Pentathienoacene. Journal of the American Chemical Society, 2005, 127, 13281-13286.	6.6	334
334	Polymer light-emitting electrochemical cell based on a novel poly(aryleneethynylene) consisting of ethynylfluorene and tetraphenyldiaminobiphenyl units. Polymers for Advanced Technologies, 2004, 15, 70-74.	1.6	7
335	Highly efficient, thermally stable and optically transparent third-order nonlinear optical copolymers consisting of fluorene and quinoxaline/quinoline units. Applied Physics A: Materials Science and Processing, 2003, 77, 375-378.	1.1	6
336	Photo- and electroluminescence properties of fluorene-based copolymers containing electron- or hole-transporting unit. Thin Solid Films, 2003, 440, 247-254.	0.8	16
337	New Series of Blue-Emitting and Electron-Transporting Copolymers Based on Cyanostilbene. Chemistry of Materials, 2003, 15, 1963-1969.	3.2	70
338	Narrow blue light-emitting diodes based on a copolymer consisting of fluorene and quinoline units. Synthetic Metals, 2003, 137, 1153-1154.	2.1	15
339	Femtosecond Third-Order Optical Nonlinearity of Conjugated Polymers Consisting of Fluorene and Tetraphenyldiaminobiphenyl Units:Â Structureâ^'Property Relationships. Journal of Physical Chemistry B, 2002, 106, 1884-1888.	1.2	32
340	New Series of Blue-Emitting and Electron-Transporting Copolymers Based on Fluorene. Macromolecules, 2002, 35, 2529-2537.	2.2	235
341	Effect of Substitution of Crown Ether on the Luminescence Performances of PPV. Journal of Physical Chemistry B, 2002, 106, 10618-10621.	1.2	7
342	Transition metal acetylide catalysts for polymerization of p-diethynylbenzene 4. Journal of Molecular Catalysis A, 2002, 184, 139-145.	4.8	12

#	Article	IF	CITATIONS
343	Vibration and X-ray photoelectron spectroscopies of FeCl3-doped poly(p-diethynylbenzene). European Polymer Journal, 2002, 38, 2057-2061.	2.6	7
344	Vibration and photoelectron spectroscopies of iodine-doped poly(p-diethynylbenzene). European Polymer Journal, 2002, 38, 2349-2353.	2.6	5
345	Large third-order nonlinear optical response of conjugated copolymers consisting of fluorene and carbazole units. Chemical Physics Letters, 2002, 362, 165-169.	1.2	28
346	Title is missing!. Catalysis Letters, 2002, 80, 59-61.	1.4	2
347	Synthesis and electroluminescence of poly(aryleneethynylene)s based on fluorene containing holeÂtransport units. Journal of Materials Chemistry, 2001, 11, 1606-1611.	6.7	47
348	Synthesis and characterization of processible electroluminescent poly[(2,7-diethynyl-9,9-di-2-ethylhexylfluorene)- alt - co -(2,5-thienylene)]. Synthetic Metals, 2001, 124, 323-327.	2.1	6
349	Efficient blue emission from siloles. Journal of Materials Chemistry, 2001, 11, 2974-2978.	6.7	590
350	Large Femtosecond Third-Order Nonlinear Optical Response in a Novel Donorâ^'Acceptor Copolymer Consisting of Ethynylfluorene and Tetraphenyldiaminobiphenyl Units. Chemistry of Materials, 2001, 13, 1540-1544.	3.2	48
351	Transition metal acetylide catalysts for polymerization of alkynes. Journal of Molecular Catalysis A, 2001, 169, 27-31.	4.8	22
352	Transition metal acetylide catalysts for polymerization of alkynes. Journal of Molecular Catalysis A, 2001, 169, 57-62.	4.8	16
353	Transition metal acetylide catalysts for polymerization of alkynes. Journal of Molecular Catalysis A, 2001, 169, 63-66.	4.8	22
354	Poly(p-diethynylbenzene) Derivatives for Nonlinear Optics. Macromolecular Rapid Communications, 2001, 22, 358-362.	2.0	21
355	Polymerization of Substituted Acetylenes Carrying Non-Polar and Polar Groups with Transition Metal Acetylide Catalysts. Macromolecular Rapid Communications, 2001, 22, 530-534.	2.0	19
356	A Novel Bipolar Electroluminescent Poly(arylene ethynylene) Consisting of Carbazole and Diethynylthiophene Units. Macromolecular Chemistry and Physics, 2001, 202, 2341-2345.	1.1	18
357	Polymerization of p-diethynylbenzene catalyzed by (ï€-C5H5)(PPh3)Ni(Cĩ†CC6H4Cĩ†CH). European Polymer Journal, 2001, 37, 1649-1654.	2.6	9
358	Large third-order nonlinear optical response of a conjugated copolymer consisting of 2,5-diethynylthiophene and carbazole units. Chemical Physics Letters, 2001, 343, 493-498.	1.2	23
359	Large and ultrafast third-order optical nonlinearity of novel copolymers containing fluorene and tetraphenyldiaminobiphenyl units in backbones. Chemical Physics Letters, 2001, 350, 99-105.	1.2	18
360	Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001, , 1740-1741.	2.2	6,387

#	Article	IF	CITATIONS
361	Poly(p-diethynylbenzene) Derivatives for Nonlinear Optics. , 2001, 22, 358.		1
362	Photoluminescence, Electroluminescence, Nonlinear Optical, and Humidity Sensitive Properties of Poly(p-diethynylbenzene) Prepared with a Nickel Acetylide Catalyst. Advanced Materials, 2000, 12, 51-53.	11.1	28
363	Polymerization ofp-diethynylbenzene and its derivatives with nickelocene acetylide catalysts containing different phosphine and alkynyl ligands. Macromolecular Rapid Communications, 2000, 21, 1263-1266.	2.0	19
364	Thermally stable light-emitting polymers of substituted polyacetylenes. Thin Solid Films, 2000, 363, 126-129.	0.8	17
365	Transition metal acetylide catalysts for polymerization of polar alkynes. Catalysis Letters, 2000, 70, 79-82.	1.4	16
366	A novel resistive-type humidity sensor based on poly(p-diethynylbenzene). Journal of Applied Polymer Science, 1999, 74, 2010-2015.	1.3	44
367	Electrical properties and spectroscopic studies of HClO4-doped poly(p-diethynylbenzene). Synthetic Metals, 1998, 94, 249-253.	2.1	8
368	Charge transport mechanism in pressed pellets of polymer proton conductors. Solid State Ionics, 1997, 100, 217-224.	1.3	49
369	Simultaneous polymerization and formation of polyphenylacetylene film by Nd(P2O4)3–Fe (AA)3–Al(i-Bu)3 combined catalyst system. Journal of Polymer Science Part A, 1995, 33, 1873-1879.	2.5	4
370	The Impact of Benzothiadiazole on the Optoelectronic Performance of Polymer/PC ₇₁ BM Blend Films and Their Application in NIR Phototransistors. Advanced Electronic Materials, 0, , 2101297.	2.6	4
371	Effects of Thieno[3,2-b]thiophene Number on Narrow-Bandgap Fused-Ring Electron Acceptors. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	1