
Terence A Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876775/publications.pdf Version: 2024-02-01

TEDENCE A ROWN

#	Article	IF	CITATIONS
1	Making ends meet: a model for RNA splicing in fungal mitochondria. Nature, 1982, 300, 719-724.	27.8	487
2	The complex origins of domesticated crops in the Fertile Crescent. Trends in Ecology and Evolution, 2009, 24, 103-109.	8.7	271
3	The genetic expectations of a protracted model for the origins of domesticated crops. Proceedings of the United States of America, 2008, 105, 13982-13986.	7.1	244
4	Population-Based Resequencing Reveals That the Flowering Time Adaptation of Cultivated Barley Originated East of the Fertile Crescent. Molecular Biology and Evolution, 2008, 25, 2211-2219.	8.9	219
5	Three geographically separate domestications of Asian rice. Nature Plants, 2015, 1, 15164.	9.3	208
6	Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat. Genome, 1999, 42, 296-307.	2.0	101
7	Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 70-85.	0.8	96
8	The limits of biomolecular palaeopathology: ancient DNA cannot be used to study venereal syphilis. Journal of Archaeological Science, 2005, 32, 703-713.	2.4	95
9	Genotype of a historic strain of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18511-18516.	7.1	95
10	DNA from primitive maize landraces and archaeological remains: implications for the domestication of maize and its expansion into South America. Journal of Archaeological Science, 2003, 30, 901-908.	2.4	90
11	How ancient DNA may help in understanding the origin and spread of agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 89-98.	4.0	83
12	GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theoretical and Applied Genetics, 2006, 112, 1563-1572.	3.6	74
13	Deficiencies and challenges in the study of ancient tuberculosis DNA. Journal of Archaeological Science, 2009, 36, 1990-1997.	2.4	69
14	Reticulated Origin of Domesticated Emmer Wheat Supports a Dynamic Model for the Emergence of Agriculture in the Fertile Crescent. PLoS ONE, 2013, 8, e81955.	2.5	59
15	Ancient DNA and the archaeologist. Antiquity, 1992, 66, 10-23.	1.0	57
16	Latitudinal variation in a photoperiod response gene in European barley: insight into the dynamics of agricultural spread from â€`historic' specimens. Journal of Archaeological Science, 2009, 36, 1092-1098.	2.4	57
17	Recent advances in ancient DNA research and their implications for archaeobotany. Vegetation History and Archaeobotany, 2015, 24, 207-214.	2.1	53
18	Kinship between burials from Grave Circle B at Mycenae revealed by ancient DNA typing. Journal of Archaeological Science, 2008, 35, 2580-2584.	2.4	52

#	Article	IF	CITATIONS
19	AFLP data and the origins of domesticated crops. Genome, 2003, 46, 448-453.	2.0	51
20	Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces. BMC Evolutionary Biology, 2011, 11, 320.	3.2	50
21	Origin of rice (Oryza sativa L.) domestication genes. Genetic Resources and Crop Evolution, 2017, 64, 1125-1132.	1.6	46
22	A simulation of the effect of inbreeding on crop domestication genetics with comments on the integration of archaeobotany and genetics: a reply to Honne and Heun. Vegetation History and Archaeobotany, 2010, 19, 151-158.	2.1	45
23	Enhanced transformation of tomato co-cultivated with Agrobacterium tumefaciens C58C1Rifr::pGSFR1161 in the presence of acetosyringone. Plant Cell Reports, 1993, 12-12, 422-5.	5.6	44
24	Degradation of DNA in artificially charred wheat seeds. Journal of Archaeological Science, 2003, 30, 1067-1076.	2.4	43
25	Genotyping of ancient <i>Mycobacterium tuberculosis</i> strains reveals historic genetic diversity. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133236.	2.6	43
26	DNA in charred wheat grains from the Iron Age hillfort at Danebury, England. Antiquity, 1994, 68, 126-132.	1.0	41
27	Next generation sequencing of DNA in 3300-year-old charred cereal grains. Journal of Archaeological Science, 2012, 39, 2780-2784.	2.4	41
28	Origin of the <i>Aromatic</i> Group of Cultivated Rice (<i>Oryza sativa</i> L.) Traced to the Indian Subcontinent. Genome Biology and Evolution, 2019, 11, 832-843.	2.5	40
29	Microsatellite typing of ancient maize: insights into the history of agriculture in southern South America. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 545-554.	2.6	39
30	Deep Sequencing of RNA from Ancient Maize Kernels. PLoS ONE, 2013, 8, e50961.	2.5	38
31	Ancient DNA: Using molecular biology to explore the past. BioEssays, 1994, 16, 719-726.	2.5	37
32	Brief communication: Identification of the authentic ancient DNA sequence in a human bone contaminated with modern DNA. American Journal of Physical Anthropology, 2006, 131, 428-431.	2.1	37
33	Network Analysis Provides Insights Into Evolution of 5S rDNA Arrays in Triticum and Aegilops. Genetics, 2001, 157, 1331-1341.	2.9	37
34	Phylogenetic analysis of complete 5′ external transcribed spacers of the 18S ribosomal RNA genes of diploid Aegilops and related species (Triticeae, Poaceae). Genetic Resources and Crop Evolution, 2004, 51, 701-712.	1.6	35
35	Biomolecular identification of ancient <i>Mycobacterium tuberculosis</i> complex DNA in human remains from Britain and continental Europe. American Journal of Physical Anthropology, 2014, 153, 178-189.	2.1	34
36	Role of genetic introgression during the evolution of cultivated rice (Oryza sativa L.). BMC Evolutionary Biology, 2018, 18, 57.	3.2	34

#	Article	IF	CITATIONS
37	A novel mutation conferring the nonbrittle phenotype of cultivated barley. New Phytologist, 2017, 214, 468-472.	7.3	32
38	Biomolecular archaeology of wheat: Past, present and future. World Archaeology, 1993, 25, 64-73.	1.1	30
39	Improved methodology for extraction and amplification of DNA from single grains of charred wheat. Journal of Archaeological Science, 2008, 35, 2585-2588.	2.4	29
40	Ancient DNA typing indicates that the "new―glume wheat of early Eurasian agriculture is a cultivated member of the Triticum timopheevii group. Journal of Archaeological Science, 2020, 123, 105258.	2.4	29
41	A phylogenetic analysis of genus Onobrychis and its relationships within the tribe Hedysareae (Fabaceae). Turkish Journal of Botany, 2013, 37, 981-992.	1.2	27
42	Multiregional origins of the domesticated tetraploid wheats. PLoS ONE, 2020, 15, e0227148.	2.5	27
43	PCR-based analysis of the intergenic spacers of the <i>Nor</i> loci on the A genomes of <i>Triticum</i> diploids and polyploids. Genome, 1999, 42, 116-128.	2.0	23
44	Comparison Between Silica-based Methods for the Extraction of DNA from Human Bones from 18th to Mid-19th Century London. Ancient Biomolecules, 2002, 4, 173-178.	0.5	23
45	Absence of Ancient DNA in Sub-Fossil Insect Inclusions Preserved in â€~Anthropocene' Colombian Copal. PLoS ONE, 2013, 8, e73150.	2.5	23
46	Phylogenetic characterisation of Onobrychis species with special focus on the forage crop Onobrychis viciifolia Scop Genetic Resources and Crop Evolution, 2012, 59, 1777-1788.	1.6	22
47	Effects of culture conditions on expression of the ice nucleation phenotype ofPseudomonas syringae. FEMS Microbiology Letters, 1991, 77, 229-232.	1.8	21
48	The current and future applications of ancient DNA in Quaternary science. Journal of Quaternary Science, 2015, 30, 144-153.	2.1	20
49	Detection of nucleotide bases in ancient seeds using gas chromatography/mass spectrometry and gas chromatography/mass spectrometry/mass spectrometry. Rapid Communications in Mass Spectrometry, 1994, 8, 503-508.	1.5	19
50	Ty3/gypsy-like Retrotransposon Sequences in Tomato. Plasmid, 1997, 38, 148-157.	1.4	19
51	Application of High Performance Liquid Chromatography/Mass Spectrometry with Electrospray Ionization to the Detection of DNA Nucleosides in Ancient Seeds. Rapid Communications in Mass Spectrometry, 1996, 10, 495-500.	1.5	17
52	Ancient DNA study of the remains of putative infanticide victims from the Yewden Roman villa site at Hambleden, England. Journal of Archaeological Science, 2014, 43, 192-197.	2.4	17
53	The Role of Humans in a Protracted Transition From Hunting-Gathering to Plant Domestication in the Fertile Crescent. Frontiers in Plant Science, 2018, 9, 1287.	3.6	17
54	Complications in the study of ancient tuberculosis: Presence of environmental bacteria in human archaeological remains. Journal of Archaeological Science, 2016, 68, 5-11.	2.4	16

#	Article	IF	CITATIONS
55	Is the domestication bottleneck a myth?. Nature Plants, 2019, 5, 337-338.	9.3	15
56	Reply to the comment by Salamini et al. on "AFLP data and the origins of domesticated crops". Genome, 2004, 47, 621-622.	2.0	13
57	Ancient DNA in human bones from Neolithic and Bronze Age sites in Greece and Crete. Journal of Archaeological Science, 2008, 35, 2707-2714.	2.4	13
58	Biomolecular Archaeology. Annual Review of Anthropology, 2013, 42, 159-174.	1,5	13
59	Non-random DNA damage resulting from heat treatment: implications for sequence analysis of ancient DNA. Journal of Archaeological Science, 2004, 31, 59-63.	2.4	12
60	Using diversity of the chloroplast genome to examine evolutionary history of wheat species. Genetic Resources and Crop Evolution, 2013, 60, 1831-1842.	1.6	12
61	Episodes of gene flow and selection during the evolutionary history of domesticated barley. BMC Genomics, 2021, 22, 227.	2.8	12
62	DNA in cremated bones from an early bronze age cemetery cairn. International Journal of Osteoarchaeology, 1995, 5, 181-187.	1.2	11
63	A discriminatory test for the wheat B and G genomes reveals misclassified accessions of Triticum timopheevii and Triticum turgidum. PLoS ONE, 2019, 14, e0215175.	2.5	11
64	Sex identification of ancient DNA samples using a microfluidic device. Journal of Archaeological Science, 2013, 40, 705-711.	2.4	10
65	Stranger from Siberia. Nature, 2010, 464, 838-839.	27.8	9
66	Ancient DNA typing shows that a Bronze Age mummy is a composite of different skeletons. Journal of Archaeological Science, 2012, 39, 2774-2779.	2.4	9
67	Novel methodology for construction and pruning of quasi-median networks. BMC Bioinformatics, 2008, 9, 115.	2.6	8
68	An Unusual Palaeobiocoenosis of Subfossil Spiders in Colombian Copal. Arachnology, 2012, 15, 241-244.	0.4	8
69	Complications in the study of ancient tuberculosis: non-specificity of IS6110 PCRs. Science and Technology of Archaeological Research, 2015, 1, 1-8.	2.4	8
70	The kinship of two 12th Dynasty mummies revealed by ancient DNA sequencing. Journal of Archaeological Science: Reports, 2018, 17, 793-797.	0.5	8
71	Misconceptions Regarding the Role of Introgression in the Origin of Oryza sativa subsp. indica. Frontiers in Plant Science, 2018, 9, 1750.	3.6	8
72	Genetic analysis of wheat landraces enables the location of the first agricultural sites in Italy to be identified. Journal of Archaeological Science, 2010, 37, 950-956.	2.4	7

#	Article	IF	CITATIONS
73	Multiple domestications of Asian rice. Nature Plants, 2016, 2, 16037.	9.3	7
74	A Case Study: Was Private William Braine of the 1845 Franklin Expedition a Victim of Tuberculosis? + Supplementary Appendix 1 (See Article Tools). Arctic, 2017, 70, .	0.4	7
75	Kinship in Aegean Prehistory? Ancient DNA in Human Bones from Mainland Greece and Crete. Annual of the British School at Athens, 2009, 104, 293-309.	0.5	6
76	DNA analysis of bones from Grave Circle B at Mycenae: a first report. Annual of the British School at Athens, 2000, 95, 115-119.	0.5	5
77	Abridged 5S rDNA units in sea beet (<i>Beta vulgaris</i> subsp. <i>maritima</i>). Genome, 2005, 48, 352-354.	2.0	4
78	Cytological characterisation of the underutilized forage crop Onobrychis viciifolia Scop. and other members of the Onobrychis genus. Genetic Resources and Crop Evolution, 2013, 60, 1987-1996.	1.6	4
79	Ritual complexity in a past community revealed by ancient DNA analysis of pre-colonial terracotta items from Northern Ghana. Journal of Archaeological Science, 2017, 79, 10-18.	2.4	4
80	Ancient Mycobacterium leprae genomes from the mediaeval sites of Chichester and Raunds in England. Journal of Archaeological Science, 2019, 112, 105035.	2.4	4
81	Inability of â€~Whole Genome Amplification' to Improve Success Rates for the Biomolecular Detection of Tuberculosis in Archaeological Samples. PLoS ONE, 2016, 11, e0163031.	2.5	4
82	The evolutionary relationship between bere barley and other types of cultivated barley. Genetic Resources and Crop Evolution, 2022, 69, 2361-2381.	1.6	4
83	Synthesis and expression of a gene encoding a 48-residue repeat in the Pseudomonas syringae ice nucleation protein. Gene, 1994, 142, 73-78.	2.2	3
84	Remnant genetic diversity detected in an ancient crop: Triticum dicoccon Schrank landraces from Asturias, Spain. Genetic Resources and Crop Evolution, 2013, 60, 355-365.	1.6	3
85	Diversity of a cytokinin dehydrogenase gene in wild and cultivated barley. PLoS ONE, 2019, 14, e0225899.	2.5	3
86	Mitochondrial DNA haplotypes of Devensian hyaenas from Creswell Crags, England. Archaeological and Anthropological Sciences, 2012, 4, 161-166.	1.8	2
87	Diversity of a wall-associated kinase gene in wild and cultivated barley. PLoS ONE, 2019, 14, e0218526.	2.5	2
88	Genetic affiliations within a 19th century burial ground at Darwen, Lancashire, UK. Journal of Archaeological Science: Reports, 2019, 24, 507-512.	0.5	2
89	Sex Identification of Ancient DNA Samples Using a Microfluidic Device. Methods in Molecular Biology, 2015, 1274, 93-98.	0.9	2
90	Plant genomics: African origins of â€~black rice'. Nature Plants, 2016, 2, 16148.	9.3	1

#	Article	IF	CITATIONS
91	Human evolution: Stranger from Siberia. Nature, 2010, , .	27.8	0