Katalin Susztak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876431/publications.pdf

Version: 2024-02-01

		17440	14759
199	19,040	63	127
papers	citations	h-index	g-index
217	217	217	22522
217	217	217	22522
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Research Priorities for Kidney-Related Research—An Agenda to Advance Kidney Care: A Position Statement From the National Kidney Foundation. American Journal of Kidney Diseases, 2022, 79, 141-152.	1.9	10
2	Urine Single-Cell RNA Sequencing in Focal Segmental Glomerulosclerosis Reveals Inflammatory Signatures. Kidney International Reports, 2022, 7, 289-304.	0.8	21
3	From mapping kidney function to mechanism and prediction. Nature Reviews Nephrology, 2022, 18, 76-77.	9.6	2
4	How Many Cell Types Are in the Kidney and What Do They Do?. Annual Review of Physiology, 2022, 84, 507-531.	13.1	69
5	<i>APOL1</i> Risk Variants, Acute Kidney Injury, and Death in Participants With African Ancestry Hospitalized With COVID-19 From the Million Veteran Program. JAMA Internal Medicine, 2022, 182, 386.	5.1	31
6	Emerging Role of Clinical Genetics in CKD. Kidney Medicine, 2022, 4, 100435.	2.0	12
7	Antisense oligonucleotides ameliorate kidney dysfunction in podocyte-specific APOL1 risk variant mice. Molecular Therapy, 2022, 30, 2491-2504.	8.2	4
8	Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2022, 101, 1126-1141.	5.2	46
9	The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends in Cell Biology, 2022, 32, 841-853.	7.9	37
10	APOL1 Kidney Risk Variants and Proteomics. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 684-692.	4.5	4
11	Endothelial cellâ€specific inducible G2APOL1 risk variant induces hypertension and hypertensive kidney disease in uniâ€nephrectomy and highâ€salt mice model. FASEB Journal, 2022, 36, .	0.5	1
12	Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nature Immunology, 2022, 23, 947-959.	14.5	37
13	Genetic Variants Associated With Mineral Metabolism Traits in Chronic Kidney Disease. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3866-e3876.	3.6	3
14	Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease. Nature Genetics, 2022, 54, 950-962.	21.4	71
15	Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease. Diabetologia, 2022, 65, 1495-1509.	6.3	16
16	Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nature Communications, 2022, 13, .	12.8	54
17	Can kidney parenchyma metabolites serve as prognostic biomarkers for long-term kidney function after nephrectomy for renal cell carcinoma? A preliminary study. CKJ: Clinical Kidney Journal, 2021, 14, 656-664.	2.9	1
18	The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation. Cell Metabolism, 2021, 33, 379-394.e8.	16.2	93

#	Article	IF	CITATIONS
19	Kidney disease genetic risk variants alter lysosomal beta-mannosidase (<i>MANBA</i>) expression and disease severity. Science Translational Medicine, 2021, 13, .	12.4	30
20	Urinary Single-Cell Profiling Captures the Cellular Diversity of the Kidney. Journal of the American Society of Nephrology: JASN, 2021, 32, 614-627.	6.1	64
21	Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. Journal of Clinical Investigation, 2021, 131, .	8.2	147
22	How to Get Started with Single Cell RNA Sequencing Data Analysis. Journal of the American Society of Nephrology: JASN, 2021, 32, 1279-1292.	6.1	19
23	Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nature Communications, 2021, 12, 2277.	12.8	122
24	The Role of Glomerular Epithelial Injury in Kidney Function Decline in Patients With Diabetic Kidney Disease in the TRIDENT Cohort. Kidney International Reports, 2021, 6, 1066-1080.	0.8	17
25	Defining the lineage of thermogenic perivascular adipose tissue. Nature Metabolism, 2021, 3, 469-484.	11.9	63
26	DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. Journal of Clinical Investigation, 2021, 131, .	8.2	23
27	Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis. Journal of Clinical Investigation, 2021, 131, .	8.2	49
28	Unbiased Analysis of Temporal Changes in Immune Serum Markers in Acute COVID-19 Infection With Emphasis on Organ Failure, Anti-Viral Treatment, and Demographic Characteristics. Frontiers in Immunology, 2021, 12, 650465.	4.8	19
29	APOL1 at 10 years: progress and next steps. Kidney International, 2021, 99, 1296-1302.	5.2	14
30	Gaining insight into metabolic diseases from human genetic discoveries. Trends in Genetics, 2021, 37, 1081-1094.	6.7	11
31	Association of Coding Variants in Hydroxysteroid 17-beta Dehydrogenase 14 (HSD17B14) with Reduced Progression to End Stage Kidney Disease in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2021, 32, 2634-2651.	6.1	9
32	A single genetic locus controls both expression of DPEP1/CHMP1A and kidney disease development via ferroptosis. Nature Communications, 2021, 12, 5078.	12.8	45
33	Renal Histologic Analysis Provides Complementary Information to Kidney Function Measurement for Patients with Early Diabetic or Hypertensive Disease. Journal of the American Society of Nephrology: JASN, 2021, 32, 2863-2876.	6.1	18
34	Mapping the genetic architecture of human traits to cell types in the kidney identifies mechanisms of disease and potential treatments. Nature Genetics, 2021, 53, 1322-1333.	21.4	87
35	NAD+ flux is maintained in aged mice despite lower tissue concentrations. Cell Systems, 2021, 12, 1160-1172.e4.	6.2	51
36	Kidney toxicity of the BRAF-kinase inhibitor vemurafenib is driven by off-target ferrochelatase inhibition. Kidney International, 2021, 100, 1214-1226.	5 . 2	16

#	Article	IF	CITATIONS
37	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	eglock 10°	Tf,50,742 T
38	Longitudinal urinary biomarkers of immunological activation in covid-19 patients without clinically apparent kidney disease versus acute and chronic failure. Scientific Reports, 2021, 11, 19675.	3.3	5
39	The key role of NLRP3 and STING in APOL1-associated podocytopathy. Journal of Clinical Investigation, 2021, 131, .	8.2	66
40	APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis. Immunity, 2021, 54, 2632-2649.e6.	14.3	48
41	Genome-wide association studies identify the role of caspase-9 in kidney disease. Science Advances, 2021, 7, eabi8051.	10.3	14
42	Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus. Nature Communications, 2021, 12, 7173.	12.8	8
43	Meta-analyses identify DNA methylation associated with kidney function and damage. Nature Communications, 2021, 12, 7174.	12.8	30
44	Rationale and design of the Transformative Research in Diabetic NephropathyÂ(TRIDENT) Study. Kidney International, 2020, 97, 10-13.	5.2	23
45	Loss of ELK1 has differential effects on age-dependent organ fibrosis. International Journal of Biochemistry and Cell Biology, 2020, 120, 105668.	2.8	11
46	Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis. Nature Machine Intelligence, 2020, 2, 607-618.	16.0	83
47	Podocytopathies. Nature Reviews Disease Primers, 2020, 6, 68.	30.5	237
48	The transcriptomic signature of the aging podocyte. Kidney International, 2020, 98, 1079-1081.	5.2	6
49	4557 Defining the relationship between kidney structure and function in patients with and without diabetes and hypertension. Journal of Clinical and Translational Science, 2020, 4, 47-47.	0.6	0
50	Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nature Communications, 2020, 11, 2338.	12.8	180
51	ASEP: Gene-based detection of allele-specific expression across individuals in a population by RNA sequencing. PLoS Genetics, 2020, 16, e1008786.	3.5	42
52	Dnmt3a and Dnmt3b-Decommissioned Fetal Enhancers are Linked to Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 765-782.	6.1	13
53	The Feasibility and Safety of Obtaining Research Kidney Biopsy Cores in Patients with Diabetes. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1024-1026.	4.5	10
54	Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nature Genetics, 2020, 52, 680-691.	21.4	445

#	Article	IF	CITATIONS
55	Unravelling the complex genetics of common kidney diseases: from variants to mechanisms. Nature Reviews Nephrology, 2020, 16, 628-640.	9.6	33
56	The interdependence of renal epithelial and endothelial metabolism and cell state. Science Signaling, 2020, 13, .	3.6	7
57	Complexities of Understanding Function from CKD-Associated DNA Variants. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1028-1040.	4.5	1
58	Loss of IL-27Rα Results in Enhanced Tubulointerstitial Fibrosis Associated with Elevated Th17 Responses. Journal of Immunology, 2020, 205, 377-386.	0.8	12
59	Inhibition of Endothelial PHD2 Suppresses Post-Ischemic Kidney Inflammation through Hypoxia-Inducible Factor-1. Journal of the American Society of Nephrology: JASN, 2020, 31, 501-516.	6.1	25
60	Phenome-wide association analysis suggests the APOL1 linked disease spectrum primarily drives kidney-specific pathways. Kidney International, 2020, 97, 1032-1041.	5.2	20
61	A kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury. Nature Communications, 2020, $11,1924.$	12.8	34
62	It Takes Two to Tango: The Role of Dysregulated Metabolism and Inflammation in Kidney Disease Development. Seminars in Nephrology, 2020, 40, 199-205.	1.6	7
63	Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29013-29024.	7.1	46
64	Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. ELife, 2020, 9, .	6.0	191
65	Understanding the kidney one cell at a time. Kidney International, 2019, 96, 862-870.	5.2	45
66	Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. Journal of the American Society of Nephrology: JASN, 2019, 30, 2000-2016.	6.1	135
67	Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nature Communications, 2019, 10, 3842.	12.8	90
68	Cytosine Methylation Studies in Patients with Diabetic Kidney Disease. Current Diabetes Reports, 2019, 19, 91.	4.2	10
69	Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis. Cell Metabolism, 2019, 30, 784-799.e5.	16.2	320
70	Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nature Communications, 2019, 10, 4130.	12.8	133
71	Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nature Genetics, 2019, 51, 1459-1474.	21.4	251
72	Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nature Communications, 2019, 10, 380.	12.8	526

#	Article	IF	Citations
73	Kidney cytosine methylation changes improve renal function decline estimation in patients with diabetic kidney disease. Nature Communications, 2019, 10, 2461.	12.8	59
74	Genomic Mismatch at <i>LIMS1</i> Locus and Kidney Allograft Rejection. New England Journal of Medicine, 2019, 380, 1918-1928.	27.0	63
75	A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nature Medicine, 2019, 25, 805-813.	30.7	260
76	FHL2 mediates podocyte Rac1 activation and foot process effacement in hypertensive nephropathy. Scientific Reports, 2019, 9, 6693.	3.3	6
77	DNMT1 in Six2 Progenitor Cells Is Essential for Transposable Element Silencing and Kidney Development. Journal of the American Society of Nephrology: JASN, 2019, 30, 594-609.	6.1	30
78	Long-Range Chromatin Interactions in the Kidney. Journal of the American Society of Nephrology: JASN, 2019, 30, 367-369.	6.1	2
79	Effective reconstruction of functional organotypic kidney spheroid for in vitro nephrotoxicity studies. Scientific Reports, 2019, 9, 17610.	3.3	17
80	The kidney transcriptome, from single cells to whole organs and back. Current Opinion in Nephrology and Hypertension, 2019, 28, 219-226.	2.0	11
81	Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nature Genetics, 2019, 51, 51-62.	21.4	328
82	Allele-specific RNA imaging shows that allelic imbalances can arise in tissues through transcriptional bursting. PLoS Genetics, 2019, 15, e1007874.	3.5	52
83	Associations of Fenofibrate Therapy WithÂlncidence and Progression of CKD inÂPatients With Type 2 Diabetes. Kidney International Reports, 2019, 4, 94-102.	0.8	30
84	Functional methylome analysis of human diabetic kidney disease. JCI Insight, 2019, 4, .	5.0	54
85	Going from acute to chronic kidney injury with FoxO3. Journal of Clinical Investigation, 2019, 129, 2192-2194.	8.2	7
86	Ascorbic acid–induced TET activation mitigates adverse hydroxymethylcytosine loss in renal cell carcinoma. Journal of Clinical Investigation, 2019, 129, 1612-1625.	8.2	64
87	The Role of Peroxisome Proliferator-Activated Receptor γ Coactivator 1α (PGC-1α) in Kidney Disease. Seminars in Nephrology, 2018, 38, 121-126.	1.6	68
88	Introduction: Systems Biology of Kidney Disease. Seminars in Nephrology, 2018, 38, 99-100.	1.6	3
89	Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science, 2018, 360, 758-763.	12.6	797
90	Screening Drugs for Kidney Disease: Targeting the Podocyte. Cell Chemical Biology, 2018, 25, 126-127.	5.2	12

#	Article	IF	Citations
91	Cytosine methylation predicts renal function decline in American Indians. Kidney International, 2018, 93, 1417-1431.	5.2	46
92	Epigenetics and Epigenomics: Implications for Diabetes and Obesity. Diabetes, 2018, 67, 1923-1931.	0.6	116
93	Renal compartment–specific genetic variation analyses identify new pathways in chronic kidney disease. Nature Medicine, 2018, 24, 1721-1731.	30.7	170
94	Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming. PLoS Biology, 2018, 16, e2005233.	5.6	51
95	Genomic integration of ERR^3 -HNF1 2 regulates renal bioenergetics and prevents chronic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4910-E4919.	7.1	33
96	APOL1: The Balance Imposed by Infection, Selection, and Kidney Disease. Trends in Molecular Medicine, 2018, 24, 682-695.	6.7	30
97	Single-cell transcriptomics of the kidney reveals unexpected cellular targets of kidney diseases. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY10-2.	0.0	0
98	Proteomic Profile of Circulating Inflammatory Proteins Associated with 10-Year Risk of ESRD in T1 and T2 Diabetes—Enrichment for TNF Receptor Superfamily Members. Diabetes, 2018, 67, .	0.6	0
99	Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nature Medicine, 2017, 23, 429-438.	30.7	282
100	Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids. Journal of Lipid Research, 2017, 58, 1132-1142.	4.2	37
101	Notch Pathway Is Activated via Genetic and Epigenetic Alterations and Is a Therapeutic Target in Clear Cell Renal Cancer. Journal of Biological Chemistry, 2017, 292, 837-846.	3.4	43
102	Genetic-Variation-Driven Gene-Expression Changes Highlight Genes with Important Functions for Kidney Disease. American Journal of Human Genetics, 2017, 100, 940-953.	6.2	81
103	Therapeutics for APOL1 nephropathies: putting out the fire in the podocyte. Nephrology Dialysis Transplantation, 2017, 32, i65-i70.	0.7	27
104	Precision Medicine Approaches to Diabetic Kidney Disease: Tissue as an Issue. Current Diabetes Reports, 2017, 17, 30.	4.2	27
105	Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. Journal of Biological Chemistry, 2017, 292, 732-747.	3.4	74
106	Human Kidney Tubule-Specific Gene Expression Based Dissection of Chronic Kidney Disease Traits. EBioMedicine, 2017, 24, 267-276.	6.1	73
107	<i>APOL1</i> and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1587-1589.	2.4	8
108	MP73-17 BENIGN AND TUMOR PARENCHYMA METABOLOMIC PROFILES AFFECT COMPENSATORY RENAL GROWTH IN RENAL CELL CARCINOMA SURGICAL PATIENTS. Journal of Urology, 2017, 197, .	0.4	0

#	Article	IF	Citations
109	PGC-1α Protects from Notch-Induced Kidney Fibrosis Development. Journal of the American Society of Nephrology: JASN, 2017, 28, 3312-3322.	6.1	127
110	A High Fat Diet During Pregnancy and Lactation Induces Cardiac and Renal Abnormalities in GLUT4 +/-Male Mice. Kidney and Blood Pressure Research, 2017, 42, 468-482.	2.0	6
111	Epigenome-wide association studies identify DNA methylation associated with kidney function. Nature Communications, 2017, 8, 1286.	12.8	145
112	In Utero Exposure to a High-Fat Diet Programs Hepatic Hypermethylation and Gene Dysregulation and Development of Metabolic Syndrome in Male Mice. Endocrinology, 2017, 158, 2860-2872.	2.8	42
113	Benign and tumor parenchyma metabolomic profiles affect compensatory renal growth in renal cell carcinoma surgical patients. PLoS ONE, 2017, 12, e0180350.	2.5	2
114	Increasing the level of peroxisome proliferator-activated receptor \hat{I}^3 coactivator- $1\hat{I}^\pm$ in podocytes results in collapsing glomerulopathy. JCI Insight, 2017, 2, .	5.0	48
115	Genome-Wide Association of Copy Number Polymorphisms and Kidney Function. PLoS ONE, 2017, 12, e0170815.	2.5	3
116	Effect of benign and tumor parenchyma metabolomic profiles on compensatory renal growth in renal cell carcinoma surgical patients Journal of Clinical Oncology, 2017, 35, 446-446.	1.6	17
117	Wnt, Notch, and Tubular Pathology. , 2016, , 201-207.		0
118	Validation and genomic interrogation of the <scp><i>MET</i></scp> variant rs11762213 as a predictor of adverse outcomes in clear cell renal cell carcinoma. Cancer, 2016, 122, 402-410.	4.1	18
119	Developing Treatments for Chronic Kidney Disease in the 21st Century. Seminars in Nephrology, 2016, 36, 436-447.	1.6	45
120	The next generation of therapeutics for chronic kidney disease. Nature Reviews Drug Discovery, 2016, 15, 568-588.	46.4	201
121	Fat Burning Problem in Cystic Kidneys: an Emerging Common Mechanism of Chronic Kidney Disease. EBioMedicine, 2016, 5, 22-23.	6.1	4
122	Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development. Journal of the American Society of Nephrology: JASN, 2016, 27, 3725-3737.	6.1	8
123	Podocytes: the Weakest Link in Diabetic Kidney Disease?. Current Diabetes Reports, 2016, 16, 45.	4.2	146
124	Cell Phenotype Transitions in Renal Fibrosis. Current Pathobiology Reports, 2016, 4, 19-25.	3.4	0
125	Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nature Reviews Nephrology, 2016, 12, 426-439.	9.6	291
126	Deletion of Lkb1 in Renal Tubular Epithelial Cells Leads to CKD by Altering Metabolism. Journal of the American Society of Nephrology: JASN, 2016, 27, 439-453.	6.1	91

#	Article	IF	Citations
127	Sox9-Positive Progenitor Cells Play a Key Role in Renal Tubule Epithelial Regeneration in Mice. Cell Reports, 2016, 14, 861-871.	6.4	154
128	Epithelial Plasticity versus EMT in Kidney Fibrosis. Trends in Molecular Medicine, 2016, 22, 4-6.	6.7	53
129	Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes. Diabetes, 2016, 65, 803-817.	0.6	131
130	Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nature Communications, 2016, 7, 10023.	12.8	412
131	APOL1 Variants. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 219-220.	2.4	6
132	The long noncoding RNA Tug1 connects metabolic changes with kidney disease in podocytes. Journal of Clinical Investigation, 2016, 126, 4072-4075.	8.2	56
133	Diabetic kidney disease. Nature Reviews Disease Primers, 2015, 1, 15018.	30.5	542
134	9. AAV-Mediated Gene Transfer as a Therapeutic Approach for Familial LCAT Deficiency. Molecular Therapy, 2015, 23, S4.	8.2	0
135	Diet-Induced Podocyte Dysfunction in Drosophila and Mammals. Cell Reports, 2015, 12, 636-647.	6.4	82
136	The Evolving Understanding of the Contribution of Lipid Metabolism to Diabetic Kidney Disease. Current Diabetes Reports, 2015, 15, 40.	4.2	136
137	Notch1 and Notch2 in Podocytes Play Differential Roles During Diabetic Nephropathy Development. Diabetes, 2015, 64, 4099-4111.	0.6	54
138	Role of DNA methylation in renal cell carcinoma. Journal of Hematology and Oncology, 2015, 8, 88.	17.0	76
139	The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury. American Journal of Physiology - Renal Physiology, 2015, 309, F901-F913.	2.7	70
140	Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nature Medicine, 2015, 21, 37-46.	30.7	1,007
141	SORBS1 gene, a new candidate for diabetic nephropathy: results from a multi-stage genome-wide association study in patients with type 1 diabetes. Diabetologia, 2015, 58, 543-548.	6.3	43
142	Functional Genomic Annotation of Genetic Risk Loci Highlights Inflammation and Epithelial Biology Networks in CKD. Journal of the American Society of Nephrology: JASN, 2015, 26, 692-714.	6.1	48
143	Molecular mechanisms of diabetic kidney disease. Journal of Clinical Investigation, 2014, 124, 2333-2340.	8.2	658
144	Kick it up a notch: Notch signaling and kidney fibrosis. Kidney International Supplements, 2014, 4, 91-96.	14.2	35

#	Article	IF	CITATIONS
145	A multicolor podocyte reporter highlights heterogeneous podocyte changes in focal segmental glomerulosclerosis. Kidney International, 2014, 85, 972-980.	5.2	19
146	Kidney Cancer Is Characterized by Aberrant Methylation of Tissue-Specific Enhancers That Are Prognostic for Overall Survival. Clinical Cancer Research, 2014, 20, 4349-4360.	7.0	60
147	<i>The hyperglycemic and hyperinsulinemic combo gives you diabetic kidney disease immediately</i> Focus on "Combined acute hyperglycemic and hyperinsulinemic clamp induced profibrotic and proinflammatory responses in the kidney― American Journal of Physiology - Cell Physiology, 2014, 306, C198-C199.	4.6	10
148	Notch Ties a Knot on Fistula Maturation. Journal of the American Society of Nephrology: JASN, 2014, 25, 648-650.	6.1	3
149	Copy number polymorphisms near SLC2A9 are associated with serum uric acid concentrations. BMC Genetics, 2014, 15, 81.	2.7	16
150	Epigenetics: a new way to look at kidney diseases. Nephrology Dialysis Transplantation, 2014, 29, 1821-1827.	0.7	49
151	Sweet Debate. Journal of the American Society of Nephrology: JASN, 2014, 25, 2386-2388.	6.1	6
152	Understanding the Epigenetic Syntax for the Genetic Alphabet in the Kidney. Journal of the American Society of Nephrology: JASN, 2014, 25, 10-17.	6.1	66
153	DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC Study. Nephrology Dialysis Transplantation, 2014, 29, 864-872.	0.7	122
154	Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags. Nature Medicine, 2013, 19, 1661-1666.	30.7	143
155	Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biology, 2013, 14, R108.	9.6	187
156	Epigenomics: The Science of No-Longer-Junk DNA. Why Study it in Chronic Kidney Disease?. Seminars in Nephrology, 2013, 33, 354-362.	1.6	24
157	Sirt1–Claudin-1 crosstalk regulates renal function. Nature Medicine, 2013, 19, 1371-1372.	30.7	26
158	For better or worse: a niche for Notch in parietal epithelial cell activation. Kidney International, 2013, 83, 988-990.	5. 2	7
159	Adiponectin Promotes Functional Recovery after Podocyte Ablation. Journal of the American Society of Nephrology: JASN, 2013, 24, 268-282.	6.1	142
160	Diabetic Nephropathy: A National Dialogue. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1603-1605.	4.5	13
161	ADCK4 "reenergizes―nephrotic syndrome. Journal of Clinical Investigation, 2013, 123, 4996-4999.	8.2	20
162	Endocardial to Myocardial Notch-Wnt-Bmp Axis Regulates Early Heart Valve Development. PLoS ONE, 2013, 8, e60244.	2.5	73

#	Article	IF	CITATIONS
163	Emerging role of autophagy in kidney function, diseases and aging. Autophagy, 2012, 8, 1009-1031.	9.1	228
164	Repair Problems in Podocytes: Wnt, Notch, and Glomerulosclerosis. Seminars in Nephrology, 2012, 32, 350-356.	1.6	46
165	Notch in the kidney: development and disease. Journal of Pathology, 2012, 226, 394-403.	4.5	110
166	Notch signaling in diabetic nephropathy. Experimental Cell Research, 2012, 318, 986-992.	2.6	59
167	The story of Notch and chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2011, 20, 56-61.	2.0	75
168	Fetal environment, epigenetics, and pediatric renal disease. Pediatric Nephrology, 2011, 26, 705-711.	1.7	41
169	Wnt/ \hat{l}^2 -Catenin Pathway in Podocytes Integrates Cell Adhesion, Differentiation, and Survival. Journal of Biological Chemistry, 2011, 286, 26003-26015.	3.4	166
170	Transcriptome Analysis of Human Diabetic Kidney Disease. Diabetes, 2011, 60, 2354-2369.	0.6	453
171	Tracing the footsteps of glomerular insulin signaling in diabetic kidney disease. Kidney International, 2011, 79, 802-804.	5.2	8
172	Getting a Notch Closer to Understanding Diabetic Kidney Disease. Diabetes, 2010, 59, 1865-1867.	0.6	23
173	Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney International, 2010, 78, 514-522.	5.2	153
174	Fine Tuning Gene Expression: The Epigenome. Seminars in Nephrology, 2010, 30, 468-476.	1.6	38
175	A susceptibility gene for kidney disease in an obese mouse model of type II diabetes maps to chromosome 8. Kidney International, 2010, 78, 453-462.	5.2	18
176	Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. Journal of Clinical Investigation, 2010, 120, 4040-4054.	8.2	306
177	The Pathogenic Role of Notch Activation in Podocytes. Nephron Experimental Nephrology, 2009, 111, e73-e79.	2.2	51
178	Epithelial-Mesenchymal Transition and Podocyte Loss in Diabetic Kidney Disease. American Journal of Kidney Diseases, 2009, 54, 590-593.	1.9	68
179	Mouse Models of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 2503-2512.	6.1	582
180	Human and Murine Kidneys Show Gender- and Species-Specific Gene Expression Differences in Response to Injury. PLoS ONE, 2009, 4, e4802.	2.5	68

#	Article	IF	Citations
181	The Notch pathway in podocytes plays a role in the development of glomerular disease. Nature Medicine, 2008, 14, 290-298.	30.7	368
182	The Role of Osteopontin in the Development of Albuminuria. Journal of the American Society of Nephrology: JASN, 2008, 19, 884-890.	6.1	78
183	Smad1 as a Biomarker for Diabetic Nephropathy. Diabetes, 2008, 57, 1459-1460.	0.6	6
184	Animal models of renal disease. Kidney International, 2008, 73, 526-528.	5 . 2	13
185	Poly(ADP-Ribose) Polymerase Inhibitors Ameliorate Nephropathy of Type 2 Diabetic Lepr <i>db/db</i> Mice. Diabetes, 2006, 55, 3004-3012.	0.6	128
186	Diabetic Nephropathy: A Frontier for Personalized Medicine: Figure 1 Journal of the American Society of Nephrology: JASN, 2006, 17, 361-367.	6.1	85
187	Glucose-Induced Reactive Oxygen Species Cause Apoptosis of Podocytes and Podocyte Depletion at the Onset of Diabetic Nephropathy. Diabetes, 2006, 55, 225-233.	0.6	35
188	Gene Expression Profiling in the Investigation of Diabetic Nephropathy., 2006,, 277-288.		0
189	Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 2006, 55, 225-33.	0.6	511
190	Localization of the GLUT8 glucose transporter in murine kidney and regulation in vivo in nondiabetic and diabetic conditions. American Journal of Physiology - Renal Physiology, 2005, 289, F186-F193.	2.7	42
191	Multiple Metabolic Hits Converge on CD36 as Novel Mediator of Tubular Epithelial Apoptosis in Diabetic Nephropathy. PLoS Medicine, 2005, 2, e45.	8.4	180
192	Molecular Profiling of Diabetic Mouse Kidney Reveals Novel Genes Linked to Glomerular Disease. Diabetes, 2004, 53, 784-794.	0.6	134
193	Genomic Strategies for Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2003, 14, S271-S278.	6.1	46
194	Smad proteins and transforming growth factor- \hat{l}^2 signaling. Kidney International, 2000, 58, S45-S52.	5 . 2	91
195	Smad3 and Smad4 Mediate Transcriptional Activation of the Human Smad7 Promoter by Transforming Growth Factor \hat{l}^2 . Journal of Biological Chemistry, 2000, 275, 11320-11326.	3.4	158
196	Electrogenic H+ pathway contributes to stimulus-induced changes of internal pH and membrane potential in intact neutrophils: role of cytoplasmic phospholipase A2. Biochemical Journal, 1997, 325, 501-510.	3.7	34
197	Arachidonic acid activatable electrogenic H+transport in the absence of cytochromeb558in human T lymphocytes. FEBS Letters, 1996, 381, 156-160.	2.8	13
198	Ligands of purinergic receptors stimulate electrogenic H+-transport of neutrophils. FEBS Letters, 1995, 375, 79-82.	2.8	9

#	Article	lF	CITATIONS
199	Loss of Mitochondrial Transcription Factor A (TFAM) in Tubule Cells Causes Renal Failure Via Activating the cGAS-STING Innate Immune Pathway. SSRN Electronic Journal, 0, , .	0.4	O