Judit Villen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876331/publications.pdf

Version: 2024-02-01

		34105	53230
86	23,869	52	85
papers	citations	h-index	g-index
100	102	100	21.605
103	103	103	31695
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A novel mistranslating tRNA model in <i>Drosophila melanogaster</i> has diverse, sexually dimorphic effects. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	4
2	Genetic background and mistranslation frequency determine the impact of mistranslating tRNASerUGG. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	1
3	Identification of phosphosites that alter protein thermal stability. Nature Methods, 2021, 18, 760-762.	19.0	36
4	The amino acid substitution affects cellular response to mistranslation. G3: Genes, Genomes, Genetics, $2021, 11, .$	1.8	10
5	University of Washington Nathan Shock Center: innovation to advance aging research. GeroScience, 2021, 43, 2161-2165.	4.6	1
6	Analysis of Molecular Networks in the Cerebellum in Chronic Schizophrenia: Modulation by Early Postnatal Life Stressors in Murine Models. International Journal of Molecular Sciences, 2021, 22, 10076.	4.1	5
7	Elamipretide (SS-31) treatment attenuates age-associated post-translational modifications of heart proteins. GeroScience, 2021, 43, 2395-2412.	4.6	17
8	Decoding Post-Translational Modification Crosstalk With Proteomics. Molecular and Cellular Proteomics, 2021, 20, 100129.	3.8	92
9	Regulating Expression of Mistranslating tRNAs by Readthrough RNA Polymerase II Transcription. ACS Synthetic Biology, 2021, 10, 3177-3189.	3.8	4
10	PKC downregulation upon rapamycin treatment attenuates mitochondrial disease. Nature Metabolism, 2020, 2, 1472-1481.	11.9	26
11	Calcium-binding proteins are altered in the cerebellum in schizophrenia. PLoS ONE, 2020, 15, e0230400.	2.5	16
12	Proteome and Phosphoproteome Analysis of Brown Adipocytes Reveals That RICTOR Loss Dampens Global Insulin/AKT Signaling. Molecular and Cellular Proteomics, 2020, 19, 1104-1119.	3.8	9
13	mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nature Communications, 2020, 11, 575.	12.8	97
14	Thesaurus: quantifying phosphopeptide positional isomers. Nature Methods, 2019, 16, 703-706.	19.0	44
15	Modulating Mistranslation Potential of tRNASer in Saccharomyces cerevisiae. Genetics, 2019, 213, 849-863.	2.9	21
16	R2â€P2 rapidâ€robotic phosphoproteomics enables multidimensional cell signaling studies. Molecular Systems Biology, 2019, 15, e9021.	7.2	102
17	Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nature Communications, 2018, 9, 5128.	12.8	337
18	TORC1 and TORC2 converge to regulate the SAGA coâ€activator in response to nutrient availability. EMBO Reports, 2017, 18, 2197-2218.	4.5	39

#	Article	IF	Citations
19	The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3. Journal of Biological Chemistry, 2017, 292, 20481-20493.	3.4	27
20	Determinants and Regulation of Protein Turnover in Yeast. Cell Systems, 2017, 5, 283-294.e5.	6.2	85
21	An atlas of human kinase regulation. Molecular Systems Biology, 2016, 12, 888.	7.2	98
22	Evolution of protein phosphorylation across 18 fungal species. Science, 2016, 354, 229-232.	12.6	93
23	Altered CSNK1E, FABP4 and NEFH protein levels in the dorsolateral prefrontal cortex in schizophrenia. Schizophrenia Research, 2016, 177, 88-97.	2.0	26
24	Enrichment of Phosphopeptides via Immobilized Metal Affinity Chromatography. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot088005.	0.3	6
25	Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry. Nature Methods, 2016, 13, 431-434.	19.0	106
26	Enrichment of Modified Peptides via Immunoaffinity Precipitation with Modification-Specific Antibodies. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot088013.	0.3	5
27	Proteomic Analysis of Protein Posttranslational Modifications by Mass Spectrometry. Cold Spring Harbor Protocols, 2016, 2016, pdb.top077743.	0.3	12
28	Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteomeâ€wide turnover. EMBO Reports, 2015, 16, 1131-1144.	4.5	63
29	Feasibility of Protein Turnover Studies in Prototroph <i>Saccharomyces cerevisiae</i> Strains. Analytical Chemistry, 2015, 87, 4008-4014.	6.5	13
30	E2~Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis. EMBO Journal, 2014, 33, n/a-n/a.	7.8	53
31	Lipin 2 Binds Phosphatidic Acid by the Electrostatic Hydrogen Bond Switch Mechanism Independent of Phosphorylation. Journal of Biological Chemistry, 2014, 289, 18055-18066.	3.4	28
32	Drafts of the human proteome. Nature Biotechnology, 2014, 32, 752-753.	17.5	3
33	mRNA Destabilization Is the Dominant Effect of Mammalian MicroRNAs by the Time Substantial Repression Ensues. Molecular Cell, 2014, 56, 104-115.	9.7	424
34	Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Molecular Metabolism, 2014, 3, 419-431.	6.5	87
35	A Practical Recipe to Survey Phosphoproteomes. Methods in Molecular Biology, 2014, 1156, 389-405.	0.9	1
36	Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods, 2013, 10, 676-682.	19.0	520

#	Article	IF	CITATIONS
37	The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes and Development, 2012, 26, 1364-1375.	5.9	141
38	Affinity-Based Probes Based on Type II Kinase Inhibitors. Journal of the American Chemical Society, 2012, 134, 19017-19025.	13.7	47
39	Systematic Functional Prioritization of Protein Posttranslational Modifications. Cell, 2012, 150, 413-425.	28.9	375
40	Angiogenin-Induced tRNA Fragments Inhibit Translation Initiation. Molecular Cell, 2011, 43, 613-623.	9.7	776
41	Chemical Genetic Screen for AMPKα2 Substrates Uncovers a Network of Proteins Involved in Mitosis. Molecular Cell, 2011, 44, 878-892.	9.7	232
42	Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling. Science, 2011, 332, 1322-1326.	12.6	772
43	Survey of Activated FLT3 Signaling in Leukemia. PLoS ONE, 2011, 6, e19169.	2.5	53
44	Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E128-35.	7.1	106
45	Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. EMBO Journal, 2011, 30, 2843-2852.	7.8	63
46	Global phosphorylation analysis of β-arrestin–mediated signaling downstream of a seven transmembrane receptor (7TMR). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15299-15304.	7.1	182
47	A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression. Cell, 2010, 143, 1174-1189.	28.9	1,564
48	Akt–RSK–S6 Kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases. Science Signaling, 2010, 3, ra64.	3.6	263
49	A site-specific, multiplexed kinase activity assay using stable-isotope dilution and high-resolution mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11606-11611.	7.1	78
50	Regulation of Neuronal Cell Death by MST1-FOXO1 Signaling. Journal of Biological Chemistry, 2009, 284, 11285-11292.	3.4	153
51	Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nature Biotechnology, 2009, 27, 933-940.	17.5	99
52	Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution. Science, 2009, 325, 1682-1686.	12.6	821
53	Evaluation of the utility of neutralâ€lossâ€dependent MS3 strategies in largeâ€scale phosphorylation analysis. Proteomics, 2008, 8, 4444-4452.	2.2	85
54	The impact of microRNAs on protein output. Nature, 2008, 455, 64-71.	27.8	3,270

#	Article	IF	CITATIONS
55	Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nature Structural and Molecular Biology, 2008, 15, 873-880.	8.2	97
56	The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Protocols, 2008, 3, 1630-1638.	12.0	566
57	Phosphoproteome Analysis of Fission Yeast. Journal of Proteome Research, 2008, 7, 1088-1097.	3.7	173
58	The Impact of Peptide Abundance and Dynamic Range on Stable-Isotope-Based Quantitative Proteomic Analyses. Journal of Proteome Research, 2008, 7, 4756-4765.	3.7	111
59	Phosphoproteome Analysis of <i>Drosophila melanogaster</i> Embryos. Journal of Proteome Research, 2008, 7, 1675-1682.	3.7	250
60	Signaling networks assembled by oncogenic EGFR and c-Met. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 692-697.	7.1	480
61	A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10762-10767.	7.1	1,435
62	The <i>S. pombe</i> SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes and Development, 2008, 22, 3184-3195.	5.9	81
63	The Septins Function in G1 Pathways that Influence the Pattern of Cell Growth in Budding Yeast. PLoS ONE, 2008, 3, e2022.	2.5	41
64	Unphosphorylated SR-Like Protein Npl3 Stimulates RNA Polymerase II Elongation. PLoS ONE, 2008, 3, e3273.	2.5	64
65	Targeting of AMSH to Endosomes Is Required for Epidermal Growth Factor Receptor Degradation. Journal of Biological Chemistry, 2007, 282, 9805-9812.	3.4	75
66	Large-scale phosphorylation analysis of mouse liver. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1488-1493.	7.1	691
67	Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer. Cell, 2007, 131, 1190-1203.	28.9	2,139
68	S. pombe LSD1 Homologs Regulate Heterochromatin Propagation and Euchromatic Gene Transcription. Molecular Cell, 2007, 26, 89-101.	9.7	102
69	Large-Scale Phosphorylation Analysis of \hat{l}_{\pm} -Factor-Arrested Saccharomyces cerevisiae. Journal of Proteome Research, 2007, 6, 1190-1197.	3.7	276
70	Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nature Structural and Molecular Biology, 2007, 14, 200-207.	8.2	105
71	An AMPK-FOXO Pathway Mediates Longevity Induced by a Novel Method of Dietary Restriction in C. elegans. Current Biology, 2007, 17, 1646-1656.	3.9	701
72	A Conserved MST-FOXO Signaling Pathway Mediates Oxidative-Stress Responses and Extends Life Span. Cell, 2006, 125, 987-1001.	28.9	758

#	Article	IF	CITATIONS
73	Proteomic Profiling of ClpXP Substrates after DNA Damage Reveals Extensive Instability within SOS Regulon. Molecular Cell, 2006, 22, 193-204.	9.7	172
74	A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nature Biotechnology, 2006, 24, 1285-1292.	17.5	1,482
75	Rational Dissection of Binding Surfaces for Mimicking of Discontinuous Antigenic Sites. Chemistry and Biology, 2006, 13, 815-823.	6.0	9
76	Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes and Development, 2006, 20, 2887-2901.	5.9	144
77	Optimization and Use of Peptide Mass Measurement Accuracy in Shotgun Proteomics. Molecular and Cellular Proteomics, 2006, 5, 1326-1337.	3.8	253
78	Studies on the Mechanism of RNAi-dependent Heterochromatin Assembly. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 461-471.	1.1	40
79	A Cullin E3 Ubiquitin Ligase Complex Associates with Rik1 and the Clr4 Histone H3-K9 Methyltransferase and is Required for RNAi-Mediated Heterochromatin Formation. RNA Biology, 2005, 2, 106-111.	3.1	149
80	Phosphoproteomic Analysis of the Developing Mouse Brain. Molecular and Cellular Proteomics, 2004, 3, 1093-1101.	3.8	322
81	Large-scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12130-12135.	7.1	1,434
82	Towards a multi-site synthetic vaccine to foot-and-mouth disease: addition of discontinuous site peptide mimic increases the neutralization response in immunized animals. Vaccine, 2004, 22, 3523-3529.	3.8	15
83	Synthetic Approaches to Multivalent Lipopeptide Dendrimers Containing Cyclic Disulfide Epitopes of Foot-and-Mouth Disease Virus. Bioconjugate Chemistry, 2003, 14, 144-152.	3.6	31
84	Functional Mimicry of a Discontinuous Antigenic Site by a Designed Synthetic Peptide. ChemBioChem, 2002, 3, 175-182.	2.6	20
85	Synthetic Peptides as Functional Mimics of a Viral Discontinuous Antigenic Site. Biologicals, 2001, 29, 265-269.	1.4	8
86	IsobaricQuant enables crossâ€platform quantification, visualization, and filtering of isobaricallyâ€labeled peptides. Proteomics, 0, , 2100253.	2.2	3