Marina Carbone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876094/publications.pdf

Version: 2024-02-01

471509 454955 1,031 48 17 30 citations h-index g-index papers 49 49 49 1078 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Systematic Review on Methods and Tools for the In Situ Fenestration of Aortic Stent-Graft. IEEE Reviews in Biomedical Engineering, 2023, 16, 348-356.	18.0	O
2	Key Ergonomics Requirements and Possible Mechanical Solutions for Augmented Reality Head-Mounted Displays in Surgery. Multimodal Technologies and Interaction, 2022, 6, 15.	2.5	3
3	Architecture of a Hybrid Video/Optical See-through Head-Mounted Display-Based Augmented Reality Surgical Navigation Platform. Information (Switzerland), 2022, 13, 81.	2.9	15
4	Serious Games and Mixed Reality Applications for Healthcare. Applied Sciences (Switzerland), 2022, 12, 3644.	2.5	0
5	Brain Tumor and Augmented Reality: New Technologies for the Future. International Journal of Environmental Research and Public Health, 2022, 19, 6347.	2.6	20
6	Augmented Reality, Mixed Reality, and Hybrid Approach in Healthcare Simulation: A Systematic Review. Applied Sciences (Switzerland), 2021, 11, 2338.	2.5	50
7	Can Liquid Lenses Increase Depth of Field in Head Mounted Video See-Through Devices?. Journal of Imaging, 2021, 7, 138.	3.0	2
8	Simulation in spinal surgery: state of the art and future perspectives of simulation systems for surgical training. Minerva Orthopedics, 2021, 72, .	1.0	2
9	Device-Agnostic Augmented Reality Rendering Pipeline for AR in Medicine. , 2021, , .		3
10	Perceptual Limits of Optical See-Through Visors for Augmented Reality Guidance of Manual Tasks. IEEE Transactions on Biomedical Engineering, 2020, 67, 411-419.	4.2	96
11	A preliminary quantitative EEG study on Augmented Reality Guidance of Manual Tasks. , 2020, , .		5
12	Towards a Wearable Augmented Reality Visor for High-Precision Manual Tasks. , 2020, , .		1
13	The Wearable VOSTARS System for Augmented Reality-Guided Surgery: Preclinical Phantom Evaluation for High-Precision Maxillofacial Tasks. Journal of Clinical Medicine, 2020, 9, 3562.	2.4	31
14	Recognizing AR-guided manual tasks through autonomic nervous system correlates: a preliminary study. , 2020, , .		2
15	Tips on Ultrasound Phantoms Development for Structured Training. Simulation in Healthcare, 2020, 15, 133-134.	1.2	1
16	Wearable Augmented Reality Platform for Aiding Complex 3D Trajectory Tracing. Sensors, 2020, 20, 1612.	3.8	34
17	Commercially Available Head-Mounted Displays Are Unsuitable for Augmented Reality Surgical Guidance: A Call for Focused Research for Surgical Applications. Surgical Innovation, 2020, 27, 254-255.	0.9	14
18	Interactive serious game for shoulder rehabilitation based on real-time hand tracking. Technology and Health Care, 2020, 28, 403-414.	1.2	8

#	Article	IF	Citations
19	LHF Connect: a DIY telepresence robot against COVID-19. Strategic Design Research Journal, 2020, 13, 418-431.	0.4	5
20	Computed-tomography image segmentation and 3D-reconstruction of the female pelvis for the preoperative planning of sacrocolpopexy: preliminary data. International Urogynecology Journal, 2019, 30, 725-731.	1.4	10
21	Review of the Augmented Reality Systems for Shoulder Rehabilitation. Information (Switzerland), 2019, 10, 154.	2.9	33
22	The vostars project: a new wearable hybrid video and optical see-through augmented reality surgical system for maxillofacial surgery. International Journal of Oral and Maxillofacial Surgery, 2019, 48, 153.	1.5	5
23	Are augmented reality headsets in surgery a dead end?. Expert Review of Medical Devices, 2019, 16, 999-1001.	2.8	24
24	Face, content, and construct validity of a simulator for training in endovascular procedures. Minimally Invasive Therapy and Allied Technologies, 2018, 27, 315-320.	1.2	6
25	Proof of Concept: Wearable Augmented Reality Video See-Through Display for Neuro-Endoscopy. Lecture Notes in Computer Science, 2018, , 95-104.	1.3	3
26	A tele-ultrasonographic platform to collect specialist second opinion in less specialized hospitals. Updates in Surgery, 2018, 70, 407-413.	2.0	17
27	Augmented reality in neurosurgery: a systematic review. Neurosurgical Review, 2017, 40, 537-548.	2.4	233
28	A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom. Computer Assisted Surgery, 2017, 22, 39-53.	1.3	69
29	[POSTER] Hybrid Video/Optical See-Through HMD. , 2017, , .		17
30	Wearable Augmented Reality Optical See Through Displays Based on Integral Imaging. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 345-356.	0.3	3
31	Augmented reality visualization of deformable tubular structures for surgical simulation. International Journal of Medical Robotics and Computer Assisted Surgery, 2016, 12, 231-240.	2.3	28
32	Application of a New Wearable Augmented Reality Video See-Through Display to Aid Percutaneous Procedures in Spine Surgery. Lecture Notes in Computer Science, 2016, , 43-54.	1,3	22
33	Speed of sound in rubber-based materials for ultrasonic phantoms. Journal of Ultrasound, 2016, 19, 251-256.	1.3	30
34	A Wearable Augmented Reality Platform for Telemedicine. Lecture Notes in Computer Science, 2016, , 92-100.	1.3	8
35	Total Hip Replacement Simulators with Virtual Planning and Physical Replica for Surgical Training and Reharsal. , 2016, , .		5
36	Basic Endovascular Skills Trainer: A surgical simulator for the training of novice practitioners of endovascular procedures., 2015, 2015, 5102-5.		3

#	Article	IF	CITATIONS
37	New training methods based on mixed reality for interventional ultrasound: Design and validation. , 2015, 2015, 5098-101.		6
38	Patient-specific ultrasound liver phantom: materials and fabrication method. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 1065-1075.	2.8	39
39	Assessment of DICOM Viewers Capable of Loading Patient-specific 3D Models Obtained by Different Segmentation Platforms in the Operating Room. Journal of Digital Imaging, 2015, 28, 518-527.	2.9	21
40	An optimal design for patientâ€specific templates for pedicle spine screws placement. International Journal of Medical Robotics and Computer Assisted Surgery, 2013, 9, 298-304.	2.3	28
41	Computer guidance system for single-incision bimanual robotic surgery. Computer Aided Surgery, 2012, 17, 161-171.	1.8	6
42	Anthropomorphic ultrasound elastography phantoms & Damp; #x2014; Characterization of silicone materials to build breast elastography phantoms., 2012, 2012, 492-4.		13
43	Value of multidetector computed tomography image segmentation for preoperative planning in general surgery. Surgical Endoscopy and Other Interventional Techniques, 2012, 26, 616-626.	2.4	40
44	How to build patientâ€specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators. International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7, 202-213.	2.3	41
45	High frequency poroelastic waves in hydrogels. Journal of the Acoustical Society of America, 2010, 127, 1197-1207.	1.1	14
46	Acoustic waves in hydrogels: A bi-phasic model for ultrasound tissue-mimicking phantom. Materials Science and Engineering C, 2009, 29, 899-907.	7.3	13
47	Use of Knee Fractures Physical Replicas for Surgical Training and Rehearsal: Proof of Concept Study. , 0, , .		0
48	Patients Specific Spine Simulators for Surgical Training and Rehearsal in Pedicle Screws Placement: A New Way for Surgical Education. , 0, , .		0