
Clare Stirzaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers, 2022, 14, 474.	3.7	16
2	Ubiquitin chromatin remodelling after DNA damage is associated with the expression of key cancer genes and pathways. Cellular and Molecular Life Sciences, 2021, 78, 1011-1027.	5.4	10
3	Evaluation and measurement of epigenetic modifications in population-based studies. , 2021, , 17-39.		0
4	DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity. Cell Reports, 2021, 36, 109722.	6.4	39
5	MethPanel: a parallel pipeline and interactive analysis tool for multiplex bisulphite PCR sequencing to assess DNA methylation biomarker panels for disease detection. Bioinformatics, 2021, 37, 2198-2200.	4.1	1
6	Identification of DNA methylation biomarkers with potential to predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Clinical Epigenetics, 2021, 13, 226.	4.1	13
7	Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains. Nature Communications, 2020, 11, 54.	12.8	72
8	Advances in Prognostic Methylation Biomarkers for Prostate Cancer. Cancers, 2020, 12, 2993.	3.7	16
9	Comprehensive evaluation of targeted multiplex bisulphite PCR sequencing for validation of DNA methylation biomarker panels. Clinical Epigenetics, 2020, 12, 90.	4.1	16
10	Alterations in the methylome of the stromal tumour microenvironment signal the presence and severity of prostate cancer. Clinical Epigenetics, 2020, 12, 48.	4.1	17
11	Epigenetic reprogramming at estrogen-receptor binding sites alters 3D chromatin landscape in endocrine-resistant breast cancer. Nature Communications, 2020, 11, 320.	12.8	103
12	Evaluation of cross-platform and interlaboratory concordance via consensus modelling of genomic measurements. Bioinformatics, 2019, 35, 560-570.	4.1	17
13	Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Scientific Reports, 2019, 9, 9511.	3.3	24
14	Replication timing and epigenome remodelling are associated with the nature of chromosomal rearrangements in cancer. Nature Communications, 2019, 10, 416.	12.8	71
15	Integrated epigenomic analysis stratifies chromatin remodellers into distinct functional groups. Epigenetics and Chromatin, 2019, 12, 12.	3.9	23
16	DNA Hypermethylation Encroachment at CpG Island Borders in Cancer Is Predisposed by H3K4 Monomethylation Patterns. Cancer Cell, 2019, 35, 297-314.e8.	16.8	62
17	The DNA methylation landscape in cancer. Essays in Biochemistry, 2019, 63, 797-811.	4.7	169

18 Cancer Methylation Biomarkers in Circulating Cell-Free DNA. , 2019, , 217-245.

3

CLARE STIRZAKER

#	Article	IF	CITATIONS
19	Enduring epigenetic landmarks define the cancer microenvironment. Genome Research, 2018, 28, 625-638.	5.5	74
20	Bisulphite Sequencing of Chromatin Immunoprecipitated DNA (BisChIP-seq). Methods in Molecular Biology, 2018, 1708, 285-302.	0.9	5
21	Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenetics and Chromatin, 2017, 10, 16.	3.9	68
22	Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nature Communications, 2017, 8, 1346.	12.8	68
23	Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer. Oncogene, 2017, 36, 1328-1338.	5.9	59
24	Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Research, 2016, 26, 719-731.	5.5	312
25	Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biology, 2016, 17, 208.	8.8	912
26	DNA methylation profile of triple negative breast cancer-specific genes comparing lymph node positive patients to lymph node negative patients. Scientific Reports, 2016, 6, 33435.	3.3	56
27	Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nature Biotechnology, 2016, 34, 726-737.	17.5	270
28	Genome-wide DNA methylation profiling in triple-negative breast cancer reveals epigenetic signatures with important clinical value. Molecular and Cellular Oncology, 2016, 3, e1038424.	0.7	24
29	Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nature Communications, 2015, 6, 5899.	12.8	162
30	DNA methylation of oestrogen-regulated enhancers defines endocrine sensitivity in breast cancer. Nature Communications, 2015, 6, 7758.	12.8	105
31	Multiplex bisulfite PCR resequencing of clinical FFPE DNA. Clinical Epigenetics, 2015, 7, 28.	4.1	26
32	Coordinated epigenetic remodelling of transcriptional networks occurs during early breast carcinogenesis. Clinical Epigenetics, 2015, 7, 52.	4.1	26
33	Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics, 2015, 7, 1051-1073.	2.1	367
34	BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach. Genome Biology, 2014, 15, R35.	9.6	29
35	Mining cancer methylomes: prospects and challenges. Trends in Genetics, 2014, 30, 75-84.	6.7	180
36	A bioengineered microenvironment to quantitatively measure the tumorigenic properties of cancer-associated fibroblasts in human prostate cancer. Biomaterials, 2013, 34, 4777-4785.	11.4	53

CLARE STIRZAKER

#	Article	IF	CITATIONS
37	Regional Activation of the Cancer Genome by Long-Range Epigenetic Remodeling. Cancer Cell, 2013, 23, 9-22.	16.8	185
38	Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene, 2013, 32, 2891-2899.	5.9	85
39	Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Research, 2012, 22, 307-321.	5.5	155
40	Copy-number-aware differential analysis of quantitative DNA sequencing data. Genome Research, 2012, 22, 2489-2496.	5.5	28
41	Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Research, 2012, 22, 1120-1127.	5.5	163
42	Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics, 2011, 6, 34-44.	2.7	189
43	Loss of Special AT-Rich Binding Protein 1 Expression is a Marker of Poor Survival in Lung Cancer. Journal of Thoracic Oncology, 2011, 6, 1179-1189.	1.1	76
44	Epigenetic Deregulation Across Chromosome 2q14.2 Differentiates Normal from Prostate Cancer and Provides a Regional Panel of Novel DNA Methylation Cancer Biomarkers. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 148-159.	2.5	51
45	Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nature Cell Biology, 2010, 12, 235-246.	10.3	178
46	<tt>Repitools</tt> : an R package for the analysis of enrichment-based epigenomic data. Bioinformatics, 2010, 26, 1662-1663.	4.1	68
47	Evaluation of affinity-based genome-wide DNA methylation data: Effects of CpG density, amplification bias, and copy number variation. Genome Research, 2010, 20, 1719-1729.	5.5	111
48	Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning. Human Molecular Genetics, 2009, 18, 3098-3109.	2.9	65
49	Epigenetic Inactivation of a Cluster of Genes Flanking <i>MLH1</i> in Microsatellite-Unstable Colorectal Cancer. Cancer Research, 2007, 67, 9107-9116.	0.9	63
50	Concordant Epigenetic Silencing of Transforming Growth Factor-Î ² Signaling Pathway Genes Occurs Early in Breast Carcinogenesis. Cancer Research, 2007, 67, 11517-11527.	0.9	76
51	Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nature Genetics, 2006, 38, 540-549.	21.4	355
52	DNA methylation: Bisulphite modification and analysis. Nature Protocols, 2006, 1, 2353-2364.	12.0	326
53	Transcriptional Gene Silencing Promotes DNA Hypermethylation through a Sequential Change in Chromatin Modifications in Cancer Cells. Cancer Research, 2004, 64, 3871-3877.	0.9	374
54	Identification and resolution of artifacts in bisulfite sequencing. Methods, 2002, 27, 101-107.	3.8	271

CLARE STIRZAKER

#	Article	IF	CITATIONS
55	Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene, 2002, 21, 1048-1061.	5.9	175
56	Cytosines Adjacent to Methylated CpG Sites Can Be Partially Resistant to Conversion in Genomic Bisulfite Sequencing Leading to Methylation Artifacts. Analytical Biochemistry, 1998, 264, 129-132.	2.4	40
57	Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Research, 1997, 25, 4422-4426.	14.5	353
58	Sequences in rotavirus glycoprotein VP7 that mediate delayed translocation and retention of the protein in the endoplasmic reticulum Journal of Cell Biology, 1990, 111, 1343-1350.	5.2	22
59	The signal peptide of the rotavirus glycoprotein VP7 is essential for its retention in the ER as an integral membrane protein. Cell, 1989, 56, 741-747.	28.9	80
60	Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. , 0, .		1