
Ronit Pinkas-Kramarski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2874052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autophagy is induced and modulated by cholesterol depletion through transcription of autophagy-related genes and attenuation of flux. Cell Death Discovery, 2021, 7, 320.	4.7	6
2	The interplay between Ras, Autophagy and cancer. Advances in Cancer Biology Metastasis, 2021, 3, 100014.	2.0	2
3	Autophagy induction in the treatment of Alzheimer's disease. Drug Development Research, 2020, 81, 184-193.	2.9	29
4	Altered mitochondrial dynamics and function in APOE4-expressing astrocytes. Cell Death and Disease, 2020, 11, 578.	6.3	58
5	Inhibition of Ras GTPases prevents Collagenâ€Induced Arthritis by Reducing the Generation of Pathogenic CD4 ⁺ T Cells and the Hyposialylation of Autoantibodies. ACR Open Rheumatology, 2020, 2, 512-524.	2.1	2
6	The Effects of APOE4 on Mitochondrial Dynamics and Proteins in vivo. Journal of Alzheimer's Disease, 2019, 70, 861-875.	2.6	34
7	Blood Glutamate Scavenger as a Novel Neuroprotective Treatment in Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 2581-2590.	3.4	24
8	Nucleolin and ErbB2 inhibition reduces tumorigenicity of ErbB2-positive breast cancer. Cell Death and Disease, 2018, 9, 47.	6.3	26
9	The Interplay Between Apolipoprotein E4 and the Autophagic–Endocytic–Lysosomal Axis. Molecular Neurobiology, 2018, 55, 6863-6880.	4.0	21
10	<scp>DJ</scp> â€1 deficiency impairs autophagy and reduces alphaâ€synuclein phagocytosis by microglia. Journal of Neurochemistry, 2017, 143, 584-594.	3.9	85
11	Continuous treatment with FTS confers resistance to apoptosis and affects autophagy. PLoS ONE, 2017, 12, e0171351.	2.5	4
12	Impaired Autophagy in APOE4 Astrocytes. Journal of Alzheimer's Disease, 2016, 51, 915-927.	2.6	94
13	Nucleolin inhibitor GroA triggers reduction in epidermal growth factor receptor activation: Pharmacological implication for glial scarring after spinal cord injury. Journal of Neurochemistry, 2016, 138, 845-858.	3.9	5
14	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
15	Nucleolin-binding by ErbB2 enhances tumorigenicity of ErbB2-positive breast cancer. Oncotarget, 2016, 7, 65320-65334.	1.8	29
16	Enhancing FTS (Salirasib) efficiency via combinatorial treatment. Biology of the Cell, 2015, 107, 130-143.	2.0	7
17	Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Molecular and Cellular Neurosciences, 2015, 68, 82-91.	2.2	120

18 Inhibition of ErbB Receptors and Autophagy in Cancer Therapy. , 2015, , 65-80.

1

#	Article	IF	CITATIONS
19	Decreased anti-regenerative effects after spinal cord injury in spry4â^'/â^' mice. Neuroscience, 2015, 287, 104-112.	2.3	8
20	EGF receptor family: twisting targets for improved cancer therapies. Growth Factors, 2014, 32, 74-81.	1.7	10
21	Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death. Oncotarget, 2014, 5, 173-184.	1.8	15
22	Ras and autophagy in cancer development and therapy. Oncotarget, 2014, 5, 577-586.	1.8	78
23	Interfering with the interaction between ErbB1, nucleolin and Ras as a potential treatment for glioblastoma. Oncotarget, 2014, 5, 8602-8613.	1.8	30
24	Epizootic Hemorrhagic Disease Virus Induces and Benefits from Cell Stress, Autophagy, and Apoptosis. Journal of Virology, 2013, 87, 13397-13408.	3.4	19
25	Disrupting the Oncogenic Synergism between Nucleolin and Ras Results in Cell Growth Inhibition and Cell Death. PLoS ONE, 2013, 8, e75269.	2.5	30
26	Ras inhibition enhances autophagy, which partially protects cells from death. Oncotarget, 2013, 4, 142-152.	1.8	35
27	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
28	Neuregulin Promotes Incomplete Autophagy of Prostate Cancer Cells That Is Independent of mTOR Pathway Inhibition. PLoS ONE, 2012, 7, e36828.	2.5	18
29	Oncogenic Synergism between ErbB1, Nucleolin, and Mutant Ras. Cancer Research, 2011, 71, 2140-2151.	0.9	67
30	Beclin 1 selfâ€association is independent of autophagy induction by amino acid deprivation and rapamycin treatment. Journal of Cellular Biochemistry, 2010, 110, 1262-1271.	2.6	30
31	The crosstalk between ErbB1 and nucleolin. Communicative and Integrative Biology, 2009, 2, 523-525.	1.4	1
32	DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Reports, 2009, 10, 285-292.	4.5	520
33	Structure-Function Analysis of Nucleolin and ErbB Receptors Interactions. PLoS ONE, 2009, 4, e6128.	2.5	29
34	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
35	Identification of Nucleolin as New ErbB Receptors- Interacting Protein. PLoS ONE, 2008, 3, e2310.	2.5	54
36	Differential Interactions Between Beclin 1 and Bcl-2 Family Members. Autophagy, 2007, 3, 561-568.	9.1	263

#	Article	IF	CITATIONS
37	Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiology of Disease, 2007, 26, 86-93.	4.4	300
38	ErbB4 Activation Inhibits MPP+-Induced Cell Death In PC12-ErbB4 Cells: Involvement of PI3K and Erk Signaling. Journal of Molecular Neuroscience, 2006, 29, 257-268.	2.3	24
39	Ras inhibition results in growth arrest and death of androgen-dependent and androgen-independent prostate cancer cells. Biochemical Pharmacology, 2006, 72, 427-436.	4.4	46
40	Ligand-independent regulation of ErbB4 receptor phosphorylation by activated ras. Journal of Cellular Biochemistry, 2006, 98, 1482-1494.	2.6	9
41	The involvement ofErbB4 with schizophrenia: Association and expression studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 142-148.	1.7	226
42	Neurodegeneration Induces Upregulation of Beclin 1. Autophagy, 2006, 2, 49-51.	9.1	96
43	Neuregulins Rescue PC12-ErbB-4 Cells From Cell Death Induced by β-Amyloid Peptide: Involvement of PI3K and PKC. Journal of Molecular Neuroscience, 2005, 26, 057-070.	2.3	30
44	Epigen, the Last Ligand of ErbB Receptors, Reveals Intricate Relationships between Affinity and Mitogenicity. Journal of Biological Chemistry, 2005, 280, 8503-8512.	3.4	83
45	Closed Head Injury Induces Upregulation of Beclin 1 at the Cortical Site of Injury. Journal of Neurotrauma, 2005, 22, 750-762.	3.4	165
46	Neuregulin promotes autophagic cell death of prostate cancer cells. Prostate, 2003, 55, 147-157.	2.3	22
47	Activation of Muscarinic Receptors Inhibits Apoptosis in PC12M1 Cells. Journal of Neurochemistry, 2002, 64, 2491-2499.	3.9	46
48	ErbB-4 activation inhibits apoptosis in PC12 cells. Neuroscience, 2001, 107, 353-362.	2.3	46
49	Neuregulin induces sustained reactive oxygen species generation to mediate neuronal differentiation. Cellular and Molecular Neurobiology, 2001, 21, 753-769.	3.3	41
50	Neuregulin Rescues PC12-ErbB4 Cells from Cell Death Induced by H2O2. Journal of Biological Chemistry, 2001, 276, 46379-46385.	3.4	127
51	ErbB-4 Activation Promotes Neurite Outgrowth in PC12 Cells. Journal of Neurochemistry, 2000, 74, 979-987.	3.9	85
52	Closed Head Injury Induces Up-Regulation of ErbB-4 Receptor at the Site of Injury. Molecular and Cellular Neurosciences, 2000, 16, 597-608.	2.2	41
53	Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO Journal, 1998, 17, 3385-3397.	7.8	341
54	Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network. EMBO Journal, 1998, 17, 5948-5963.	7.8	109

#	Article	IF	CITATIONS
55	The oncogenic ErbB-2/ErbB-3 heterodimer is a surrogate receptor of the epidermal growth factor and betacellulin. Oncogene, 1998, 16, 1249-1258.	5.9	97
56	Epiregulin Is a Potent Pan-ErbB Ligand That Preferentially Activates Heterodimeric Receptor Complexes. Journal of Biological Chemistry, 1998, 273, 10496-10505.	3.4	141
57	Activity-dependent regulation of Neu differentiation factor/neuregulin expression in rat brain. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1888-1893.	7.1	94
58	ErbB Tyrosine Kinases and the Two Neuregulin Families Constitute a Ligand-Receptor Network. Molecular and Cellular Biology, 1998, 18, 7602-7602.	2.3	3
59	ErbB Tyrosine Kinases and the Two Neuregulin Families Constitute a Ligand-Receptor Network. Molecular and Cellular Biology, 1998, 18, 6090-6101.	2.3	129
60	A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene, 1997, 14, 2099-2109.	5.9	161
61	Differential expression of NDF/neuregulin receptors ErbB-3 and ErbB-4 and involvement in inhibition of neuronal differentiation. Oncogene, 1997, 15, 2803-2815.	5.9	115
62	Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO Journal, 1997, 16, 4938-4950.	7.8	209
63	ErbB receptors and EGF-like ligands: cell lineage determination and oncogenesis through combinatorial signaling. Journal of Mammary Gland Biology and Neoplasia, 1997, 2, 97-107.	2.7	100
64	M1 Agonists for the Treatment of Alzheimer's Disease Annals of the New York Academy of Sciences, 1996, 777, 189-196.	3.8	64
65	Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions EMBO Journal, 1996, 15, 2452-2467.	7.8	671
66	Neu Differentiation Factor/Neuregulin Isoforms Activate Distinct Receptor Combinations. Journal of Biological Chemistry, 1996, 271, 19029-19032.	3.4	132
67	Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO Journal, 1996, 15, 2452-67.	7.8	282
68	NGF-dependent neurotrophic-like effects of AF102B, anM1 Muscarinic agonist, in PC12M1 cells. NeuroReport, 1995, 6, 485-488.	1.2	19
69	ErbB-3 mediates differential mitogenic effects of NDF/heregulin isoforms on mouse keratinocytes. Oncogene, 1995, 10, 1403-11.	5.9	58
70	Brain neurons and glial cells express Neu differentiation factor/heregulin: a survival factor for astrocytes Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9387-9391.	7.1	134
71	Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10075-10078.	7.1	571
72	Growth Factorâ€Like Effects Mediated by Muscarinic Receptors in PC12M1 Cells. Journal of Neurochemistry, 1992, 59, 2158-2166.	3.9	46

#	Article	IF	CITATIONS
73	Indications for selective coupling to phosphoinositide hydrolysis or to adenylate cyclase inhibition by endogenous muscarinic receptor subtypes M3 and M4 but not by M2 in tumor cell lines. Neuroscience Letters, 1990, 108, 335-340.	2.1	26
74	Postnatal changes in muscarinic receptor subtype mRNAs in rat brain and heart. Journal of Molecular Neuroscience, 1989, 1, 209-13.	2.3	14
75	Cloned rat M3 muscarinic receptors mediate phosphoinositide hydrolysis but not adenylate cyclase inhibition. FEBS Letters, 1988, 239, 174-178.	2.8	26
76	Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover EMBO Journal, 1988, 7, 3031-3035.	7.8	63
77	Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. EMBO Journal, 1988, 7, 3031-5.	7.8	12