
Philip A Gregory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2873428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuropilin-1 is over-expressed in claudin-low breast cancer and promotes tumor progression through acquisition of stem cell characteristics and RAS/MAPK pathway activation. Breast Cancer Research, 2022, 24, 8.	2.2	10
2	The Quaking <scp>RNA</scp> â€binding proteins as regulators of cell differentiation. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1724.	3.2	18
3	Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer. Cell Reports, 2021, 34, 108585.	2.9	33
4	Selective Microfluidic Capture and Detection of Prostate Cancer Cells from Urine without Digital Rectal Examination. Cancers, 2021, 13, 5544.	1.7	7
5	Insufficiently complex unique-molecular identifiers (UMIs) distort small RNA sequencing. Scientific Reports, 2020, 10, 14593.	1.6	9
6	Extensive transcriptional responses are co-ordinated by microRNAs as revealed by Exon–Intron Split Analysis (EISA). Nucleic Acids Research, 2019, 47, 8606-8619.	6.5	9
7	The miR-200-Quaking axis functions in tumour angiogenesis. Oncogene, 2019, 38, 6767-6769.	2.6	4
8	MicroRNA-143-3p targets pyruvate carboxylase expression and controls proliferation and migration of MDA-MB-231†cells. Archives of Biochemistry and Biophysics, 2019, 677, 108169.	1.4	13
9	Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Seminars in Cell and Developmental Biology, 2018, 75, 50-60.	2.3	18
10	Combinatorial Targeting by MicroRNAs Co-ordinates Post-transcriptional Control of EMT. Cell Systems, 2018, 7, 77-91.e7.	2.9	92
11	miRâ€200/375 control epithelial plasticityâ€associated alternative splicing by repressing the <scp>RNA</scp> â€binding protein Quaking. EMBO Journal, 2018, 37, .	3.5	82
12	A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene, 2017, 36, 24-34.	2.6	85
13	Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene, 2017, 36, 3417-3427.	2.6	68
14	MicroRNA-194 Promotes Prostate Cancer Metastasis by Inhibiting SOCS2. Cancer Research, 2017, 77, 1021-1034.	0.4	94
15	The RNA Binding Protein Quaking Regulates Formation of circRNAs. Cell, 2015, 160, 1125-1134.	13.5	1,698
16	Genomeâ€wide identification of miRâ€200 targets reveals a regulatory network controlling cell invasion. EMBO Journal, 2014, 33, 2040-2056.	3.5	126
17	MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene, 2014, 33, 4077-4088.	2.6	108
18	Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends in Molecular Medicine, 2014, 20, 643-651.	3.5	21

PHILIP A GREGORY

#	Article	IF	CITATIONS
19	Specificity Protein 1 (Sp1) Maintains Basal Epithelial Expression of the miR-200 Family. Journal of Biological Chemistry, 2014, 289, 11194-11205.	1.6	55
20	Mechanisms of vitamin D3 metabolite repression of IgE-dependent mast cell activation. Journal of Allergy and Clinical Immunology, 2014, 133, 1356-1364.e14.	1.5	100
21	Chromatinized Protein Kinase C-Î, Directly Regulates Inducible Genes in Epithelial to Mesenchymal Transition and Breast Cancer Stem Cells. Molecular and Cellular Biology, 2014, 34, 2961-2980.	1.1	40
22	Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene, 2013, 32, 2992-3000.	2.6	150
23	Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem cell-like state. Journal of Cell Science, 2013, 126, 2256-66.	1.2	173
24	Regulation of vascular leak and recovery from ischemic injury by general and VE-cadherin–restricted miRNA antagonists of miR-27. Blood, 2013, 122, 2911-2919.	0.6	60
25	Polymorphisms in the Mitochondrial Ribosome Recycling Factor EF-G2mt/MEF2 Compromise Cell Respiratory Function and Increase Atorvastatin Toxicity. PLoS Genetics, 2012, 8, e1002755.	1.5	5
26	ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. Journal of Clinical Investigation, 2012, 122, 3170-3183.	3.9	135
27	MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. Journal of Translational Medicine, 2011, 9, 30.	1.8	120
28	An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 2011, 22, 1686-1698.	0.9	505
29	The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200–dependent pathway in mice. Journal of Clinical Investigation, 2011, 121, 1373-1385.	3.9	172
30	A Novel Polymorphism in a Forkhead Box A1 (FOXA1) Binding Site of the Human UDP Glucuronosyltransferase 2B17 Gene Modulates Promoter Activity and Is Associated with Altered Levels of Circulating Androstane-3α,17β-diol Glucuronide. Molecular Pharmacology, 2010, 78, 714-722.	1.0	30
31	The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cellular and Molecular Life Sciences, 2009, 66, 1682-1699.	2.4	116
32	Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes and Development, 2009, 23, 2140-2151.	2.7	435
33	The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 2008, 10, 593-601.	4.6	3,455
34	A Double-Negative Feedback Loop between ZEB1-SIP1 and the microRNA-200 Family Regulates Epithelial-Mesenchymal Transition. Cancer Research, 2008, 68, 7846-7854.	0.4	956
35	MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 2008, 7, 3112-3117.	1.3	467
36	The microRNA-200 Family Regulates Epithelial to Mesenchymal Transition. Scientific World Journal, The, 2008, 8, 901-904.	0.8	69

Philip A Gregory

#	Article	IF	CITATIONS
37	The caudal-related homeodomain protein Cdx2 and hepatocyte nuclear factor 11± cooperatively regulate the UDP-glucuronosyltransferase 2B7 gene promoter. Pharmacogenetics and Genomics, 2006, 16, 527-536.	0.7	20
38	Polymorphic variations in the expression of the chemical detoxifying UDP glucuronosyltransferases. Toxicology and Applied Pharmacology, 2005, 207, 77-83.	1.3	36
39	Identification and Characterization of Functional Hepatocyte Nuclear Factor 1â€Binding Sites in UDPâ€Glucuronosyltransferase Genes. Methods in Enzymology, 2005, 400, 22-46.	0.4	15
40	GLUCURONIDATION AND THE UDP-GLUCURONOSYLTRANSFERASES IN HEALTH AND DISEASE. Drug Metabolism and Disposition, 2004, 32, 281-290.	1.7	224
41	Coordinate Regulation of the Human UDP-Glucuronosyltransferase 1A8, 1A9, and 1A10 Genes by Hepatocyte Nuclear Factor 11± and the Caudal-Related Homeodomain Protein 2. Molecular Pharmacology, 2004, 65, 953-963.	1.0	70
42	Regulation of UDP glucuronosyltransferases in the gastrointestinal tract. Toxicology and Applied Pharmacology, 2004, 199, 354-363.	1.3	107
43	Cloning and Characterization of the Human UDP-glucuronosyltransferase 1A8, 1A9, and 1A10 Gene Promoters. Journal of Biological Chemistry, 2003, 278, 36107-36114.	1.6	31
44	Regulation of UDP Glucuronosyltransferase Genes. Current Drug Metabolism, 2003, 4, 249-257.	0.7	119
45	The Homeodomain Pbx2-Prep1 Complex Modulates Hepatocyte Nuclear Factor 1α-Mediated Activation of theUDP-Clucuronosyltransferase 2B17Gene. Molecular Pharmacology, 2002, 62, 154-161.	1.0	33
46	Tissue specific differences in the regulation of the UDP glucuronosyltransferase 2B17 gene promoter. Pharmacogenetics and Genomics, 2000, 10, 809-820.	5.7	31