
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2872625/publications.pdf Version: 2024-02-01



SVEN DIFIN

| #  | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Coronary Magnetic Resonance Angiography for the Detection of Coronary Stenoses. New England<br>Journal of Medicine, 2001, 345, 1863-1869.                                                                                                                                                           | 27.0 | 1,281     |
| 2  | Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society<br>for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post<br>Processing. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 35.                    | 3.3  | 1,037     |
| 3  | Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet, The, 2012, 379, 453-460.                                                                                                           | 13.7 | 936       |
| 4  | Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and<br>steadyâ€ <b>s</b> tate free precession imaging sequences. Journal of Magnetic Resonance Imaging, 2003, 17,<br>323-329.                                                                         | 3.4  | 660       |
| 5  | Normal values for cardiovascular magnetic resonance in adults and children. Journal of<br>Cardiovascular Magnetic Resonance, 2015, 17, 29.                                                                                                                                                          | 3.3  | 583       |
| 6  | Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review.<br>Journal of Cardiovascular Magnetic Resonance, 2017, 18, 89.                                                                                                                                      | 3.3  | 551       |
| 7  | Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 19.                                                                                                                               | 3.3  | 467       |
| 8  | Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. New England Journal of Medicine, 2019, 380, 2418-2428.                                                                                                                                                                 | 27.0 | 326       |
| 9  | Myocardial <i>T</i> <sub>1</sub> mapping: Application to patients with acute and chronic myocardial infarction. Magnetic Resonance in Medicine, 2007, 58, 34-40.                                                                                                                                    | 3.0  | 309       |
| 10 | MR Imaging of Cardiac Tumors and Masses: A Review of Methods and Clinical Applications. Radiology, 2013, 268, 26-43.                                                                                                                                                                                | 7.3  | 307       |
| 11 | The appropriate and justified use of medical radiation in cardiovascular imaging: a position document of the ESC Associations of Cardiovascular Imaging, Percutaneous Cardiovascular Interventions and Electrophysiology. European Heart Journal, 2014, 35, 665-672.                                | 2.2  | 301       |
| 12 | Reference values for healthy human myocardium using a T1 mapping methodology: results from the<br>International T1 Multicenter cardiovascular magnetic resonance study. Journal of Cardiovascular<br>Magnetic Resonance, 2014, 16, 69.                                                              | 3.3  | 262       |
| 13 | Steady-state free precession magnetic resonance imaging of the heart: Comparison with segmented k-space gradient-echo imaging. Journal of Magnetic Resonance Imaging, 2001, 14, 230-236.                                                                                                            | 3.4  | 229       |
| 14 | Effect of Care Guided by Cardiovascular Magnetic Resonance, Myocardial Perfusion Scintigraphy, or<br>NICE Guidelines on Subsequent Unnecessary Angiography Rates. JAMA - Journal of the American Medical<br>Association, 2016, 316, 1051.                                                           | 7.4  | 227       |
| 15 | Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 2003, 18, 25-32.                                                                                 | 3.4  | 226       |
| 16 | Role of multimodality cardiac imaging in the management of patients with hypertrophic<br>cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging<br>Endorsed by the Saudi Heart Association. European Heart Journal Cardiovascular Imaging, 2015, 16,<br>280-280. | 1.2  | 214       |
| 17 | Human Myocardium: Single-Breath-hold MR T1 Mapping with High Spatial Resolution—Reproducibility<br>Study. Radiology, 2006, 238, 1004-1012.                                                                                                                                                          | 7.3  | 209       |
| 18 | The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the<br>European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging,<br>2015, 16, 353-353r.                                                                             | 1.2  | 199       |

| #  | Article                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK<br>Biobank - rationale, challenges and approaches. Journal of Cardiovascular Magnetic Resonance, 2013,<br>15, 46.                                                                                                 | 3.3 | 188       |
| 20 | European Association of Cardiovascular Imaging (EACVI) position paper: multimodality imaging in pericardial disease. European Heart Journal Cardiovascular Imaging, 2015, 16, 12-31.                                                                                                                             | 1.2 | 186       |
| 21 | Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin.<br>Internal and Emergency Medicine, 2017, 12, 147-155.                                                                                                                                                         | 2.0 | 186       |
| 22 | High-Resolution Magnetic Resonance Myocardial Perfusion Imaging at 3.0-Tesla to Detect<br>Hemodynamically Significant Coronary Stenoses as Determined by Fractional Flow Reserve. Journal of<br>the American College of Cardiology, 2011, 57, 70-75.                                                             | 2.8 | 183       |
| 23 | Effects of Vitamin D on Cardiac Function inÂPatients With Chronic HF. Journal of the American College<br>of Cardiology, 2016, 67, 2593-2603.                                                                                                                                                                     | 2.8 | 179       |
| 24 | Diagnosis and management of myocardial involvement in systemic immune-mediated diseases: a position<br>statement of the European Society of Cardiology Working Group on Myocardial and Pericardial<br>Disease. European Heart Journal, 2017, 38, 2649-2662.                                                      | 2.2 | 163       |
| 25 | Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: assessment of predictive risk factors and the relationship to subsequent health status. Heart, 2012, 98, 18-23.                                                                                 | 2.9 | 162       |
| 26 | Assessment of non–ST-segment elevation acute coronary syndromes with cardiac magnetic resonance<br>imaging. Journal of the American College of Cardiology, 2004, 44, 2173-2181.                                                                                                                                  | 2.8 | 159       |
| 27 | Deep Learning–based Method for Fully Automatic Quantification of Left Ventricle Function from Cine<br>MR Images: A Multivendor, Multicenter Study. Radiology, 2019, 290, 81-88.                                                                                                                                  | 7.3 | 152       |
| 28 | Comparison of Cardiovascular Magnetic Resonance and Single-Photon Emission Computed<br>Tomography in Women With Suspected Coronary Artery Disease From the Clinical Evaluation of<br>Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) Trial. Circulation, 2014, 129,<br>1129-1138.                 | 1.6 | 146       |
| 29 | Automated Pixel-Wise Quantitative Myocardial Perfusion Mapping by CMRÂtoÂDetect Obstructive<br>Coronary Artery Disease and Coronary Microvascular Dysfunction. JACC: Cardiovascular Imaging,<br>2019, 12, 1958-1969.                                                                                             | 5.3 | 140       |
| 30 | Dynamic contrastâ€enhanced myocardial perfusion MRI accelerated with <i>kâ€t</i> sense. Magnetic<br>Resonance in Medicine, 2007, 58, 777-785.                                                                                                                                                                    | 3.0 | 138       |
| 31 | Reperfusion haemorrhage as determined by cardiovascular MRI is a predictor of adverse left ventricular remodelling and markers of late arrhythmic risk. Heart, 2011, 97, 453-459.                                                                                                                                | 2.9 | 136       |
| 32 | Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center<br>variability and consensus contours. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 63.                                                                                                                     | 3.3 | 135       |
| 33 | European Association of Cardiovascular Imaging expert consensus paper: a comprehensive review of cardiovascular magnetic resonance normal values of cardiac chamber size and aortic root in adults and recommendations for grading severity. European Heart Journal Cardiovascular Imaging, 2019, 20, 1321-1331. | 1.2 | 122       |
| 34 | Coronary Artery Disease: Myocardial Perfusion MR Imaging with Sensitivity Encoding versus<br>Conventional Angiography. Radiology, 2005, 235, 423-430.                                                                                                                                                            | 7.3 | 116       |
| 35 | Assessing Myocardial Extracellular Volume byÂT1ÂMapping to Distinguish Hypertrophic Cardiomyopathy<br>From Athlete's Heart. Journal of the American College of Cardiology, 2016, 67, 2189-2190.                                                                                                                  | 2.8 | 105       |
| 36 | Validation of Dynamic 3-Dimensional Whole Heart Magnetic Resonance Myocardial Perfusion Imaging<br>Against Fractional Flow Reserve for the Detection of Significant Coronary Artery Disease. Journal of<br>the American College of Cardiology, 2012, 60, 756-765.                                                | 2.8 | 103       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cine MRI using steady state free precession in the radial long axis orientation is a fast accurate<br>method for obtaining volumetric data of the left ventricle. Journal of Magnetic Resonance Imaging,<br>2001, 14, 685-692.                                                                                                                           | 3.4 | 101       |
| 38 | The Prognostic Significance of Quantitative Myocardial Perfusion: An Artificial Intelligence Based Approach Using Perfusion Mapping. Circulation, 2020, 141, 1282-1291.                                                                                                                                                                                  | 1.6 | 100       |
| 39 | A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and<br>Inflammation & Infection Committees of the European Association of Nuclear Medicine, the<br>European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology.<br>Iournal of Nuclear Cardiology. 2018. 25. 298-319. | 2.1 | 97        |
| 40 | High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. European Heart Journal, 2008, 29, 2148-2155.                                                                                                                                                                                       | 2.2 | 96        |
| 41 | Coronary Artery Disease: Assessment with a Comprehensive MR Imaging Protocol—Initial Results.<br>Radiology, 2002, 225, 300-307.                                                                                                                                                                                                                          | 7.3 | 95        |
| 42 | Accelerated wholeâ€heart 3D CSPAMM for myocardial motion quantification. Magnetic Resonance in<br>Medicine, 2008, 59, 755-763.                                                                                                                                                                                                                           | 3.0 | 95        |
| 43 | Athletic Cardiac Adaptation in Males Is a Consequence of Elevated Myocyte Mass. Circulation:<br>Cardiovascular Imaging, 2016, 9, e003579.                                                                                                                                                                                                                | 2.6 | 95        |
| 44 | Development of a universal dual-bolus injection scheme for the quantitative assessment of<br>myocardial perfusion cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic<br>Resonance, 2011, 13, 28.                                                                                                                                      | 3.3 | 92        |
| 45 | Assessment of valve haemodynamics, reverse ventricular remodelling and myocardial fibrosis<br>following transcatheter aortic valve implantation compared to surgical aortic valve replacement: a<br>cardiovascular magnetic resonance study. Heart, 2013, 99, 1185-1191.                                                                                 | 2.9 | 91        |
| 46 | Multimodality Imaging in Restrictive Cardiomyopathies: An EACVI expert consensus document In collaboration with the "Working Group on myocardial and pericardial diseases―of the European Society of Cardiology Endorsed by The Indian Academy of Echocardiography. European Heart Journal Cardiovascular Imaging, 2017, 18, 1090-1121.                  | 1.2 | 91        |
| 47 | Use of Cardiovascular Magnetic Resonance Imaging in Acute Coronary Syndromes. Circulation, 2009, 119, 1671-1681.                                                                                                                                                                                                                                         | 1.6 | 90        |
| 48 | Cost-effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE-MARC study. Heart, 2013, 99, 873-881.                                                                                                                                                                  | 2.9 | 90        |
| 49 | The cost-effectiveness of transcatheter aortic valve implantation versus surgical aortic valve replacement in patients with severe aortic stenosis at high operative risk. Heart, 2013, 99, 914-920.                                                                                                                                                     | 2.9 | 88        |
| 50 | Diagnosis of Arrhythmogenic Right Ventricular Dysplasia: A Review. Radiographics, 2002, 22, 639-648.                                                                                                                                                                                                                                                     | 3.3 | 87        |
| 51 | k-Space and Time Sensitivity Encoding–accelerated Myocardial Perfusion MR Imaging at 3.0 T:<br>Comparison with 1.5 T. Radiology, 2008, 249, 493-500.                                                                                                                                                                                                     | 7.3 | 86        |
| 52 | Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance<br>imaging to guide the management of patients with stable coronary artery disease. Journal of<br>Cardiovascular Magnetic Resonance, 2012, 14, 77.                                                                                                       | 3.3 | 82        |
| 53 | Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late<br>gadolinium enhancement CMR in patients with acute myocardial infarction. Journal of Cardiovascular<br>Magnetic Resonance, 2009, 11, 33.                                                                                                               | 3.3 | 81        |
| 54 | Prognostic Value of Cardiovascular Magnetic Resonance and Single-Photon Emission Computed<br>Tomography in Suspected Coronary Heart Disease: Long-Term Follow-up of a Prospective, Diagnostic<br>Accuracy Cohort Study. Annals of Internal Medicine, 2016, 165, 1.                                                                                       | 3.9 | 80        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Timing of Cardiovascular MR Imaging after Acute Myocardial Infarction: Effect on Estimates of Infarct<br>Characteristics and Prediction of Late Ventricular Remodeling. Radiology, 2011, 261, 116-126.                                                                                                                                                                     | 7.3 | 78        |
| 56 | Consensus best practice pathway of the UK Systemic Sclerosis Study group: management of cardiac disease in systemic sclerosis. Rheumatology, 2017, 56, 912-921.                                                                                                                                                                                                            | 1.9 | 77        |
| 57 | Three-Dimensional Coronary MR Angiography Performed with Subject-Specific Cardiac Acquisition<br>Windows and Motion-Adapted Respiratory Gating. American Journal of Roentgenology, 2003, 180,<br>505-512.                                                                                                                                                                  | 2.2 | 75        |
| 58 | ESC Core Curriculum for the General Cardiologist (2013). European Heart Journal, 2013, 34, 2381-2411.                                                                                                                                                                                                                                                                      | 2.2 | 75        |
| 59 | Splenic Switch-off: A Tool to Assess Stress Adequacy in Adenosine Perfusion Cardiac MR Imaging.<br>Radiology, 2015, 276, 732-740.                                                                                                                                                                                                                                          | 7.3 | 75        |
| 60 | Troponin-I concentration 72 h after myocardial infarction correlates with infarct size and presence of microvascular obstruction. Heart, 2006, 93, 1547-1551.                                                                                                                                                                                                              | 2.9 | 74        |
| 61 | Cell-based therapy for myocardial repair in patients with acute myocardial infarction: Rationale and study design of the SWiss multicenter Intracoronary Stem cells Study in Acute Myocardial Infarction (SWISS-AMI). American Heart Journal, 2010, 160, 58-64.                                                                                                            | 2.7 | 74        |
| 62 | A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and<br>Inflammation & Infection Committees of the European Association of Nuclear Medicine, the<br>European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology.<br>European Heart Journal Cardiovascular Imaging, 2017, 18, 1073-1089. | 1.2 | 74        |
| 63 | Doppler Versus Thermodilution-Derived Coronary Microvascular Resistance to Predict Coronary<br>Microvascular Dysfunction in Patients With Acute Myocardial Infarction or Stable Angina Pectoris.<br>American Journal of Cardiology, 2018, 121, 1-8.                                                                                                                        | 1.6 | 70        |
| 64 | High resolution threeâ€dimensional cardiac perfusion imaging using compartmentâ€based <i>kâ€t</i><br>principal component analysis. Magnetic Resonance in Medicine, 2011, 65, 575-587.                                                                                                                                                                                      | 3.0 | 68        |
| 65 | Diabetes Mellitus, Microalbuminuria, and Subclinical Cardiac Disease: Identification and Monitoring<br>of Individuals at Risk of Heart Failure. Journal of the American Heart Association, 2017, 6, .                                                                                                                                                                      | 3.7 | 67        |
| 66 | Assessment of Coronary Artery Stenosis Severity and Location. JACC: Cardiovascular Imaging, 2013, 6, 600-609.                                                                                                                                                                                                                                                              | 5.3 | 65        |
| 67 | Multimodality imaging in the diagnosis, risk stratification, and management of patients with dilated<br>cardiomyopathies: an expert consensus document from the European Association of Cardiovascular<br>Imaging. European Heart Journal Cardiovascular Imaging, 2019, 20, 1075-1093.                                                                                     | 1.2 | 65        |
| 68 | Left ventricular blood flow kinetic energy after myocardial infarction - insights from 4D flow<br>cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 61.                                                                                                                                                                           | 3.3 | 64        |
| 69 | Society for Cardiovascular Magnetic Resonance (SCMR) recommended CMR protocols for scanning patients with active or convalescent phase COVID-19 infection. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 61.                                                                                                                                                     | 3.3 | 63        |
| 70 | Clinical applications of intra-cardiac four-dimensional flow cardiovascular magnetic resonance: A systematic review. International Journal of Cardiology, 2017, 249, 486-493.                                                                                                                                                                                              | 1.7 | 62        |
| 71 | Comparison of the Diagnostic Performance of Four Quantitative Myocardial Perfusion Estimation<br>Methods Used in Cardiac MR Imaging: CE-MARC Substudy. Radiology, 2015, 275, 393-402.                                                                                                                                                                                      | 7.3 | 61        |
| 72 | Assessment of Regional Left Ventricular Function: Accuracy and Reproducibility of Positioning<br>Standard Short-Axis Sections in Cardiac MR Imaging. Radiology, 2005, 235, 229-236.                                                                                                                                                                                        | 7.3 | 60        |

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The effect of microvascular obstruction and intramyocardial hemorrhage on contractile recovery in reperfused myocardial infarction: insights from cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 58.                                    | 3.3 | 58        |
| 74 | Coronary and Microvascular Physiology During Intra-Aortic BalloonÂCounterpulsation. JACC:<br>Cardiovascular Interventions, 2014, 7, 631-640.                                                                                                                                        | 2.9 | 58        |
| 75 | Multicenter Evaluation of Dynamic Three-Dimensional Magnetic Resonance Myocardial Perfusion<br>Imaging for the Detection of Coronary Artery Disease Defined by Fractional Flow Reserve.<br>Circulation: Cardiovascular Imaging, 2015, 8, .                                          | 2.6 | 58        |
| 76 | Society for Cardiovascular Magnetic Resonance (SCMR) guidance for the practice of cardiovascular magnetic resonance during the COVID-19 pandemic. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 26.                                                                       | 3.3 | 58        |
| 77 | Comparison of right ventricular volume measurement between segmented k-space gradient-echo and<br>steady-state free precession magnetic resonance imaging. Journal of Magnetic Resonance Imaging,<br>2002, 16, 253-258.                                                             | 3.4 | 57        |
| 78 | Myocardial Extracellular Volume Estimation by CMR Predicts Functional Recovery Following Acute<br>MI. JACC: Cardiovascular Imaging, 2017, 10, 989-999.                                                                                                                              | 5.3 | 57        |
| 79 | Left ventricular thrombus formation in myocardial infarction is associated with altered left<br>ventricular blood flow energetics. European Heart Journal Cardiovascular Imaging, 2019, 20, 108-117.                                                                                | 1.2 | 57        |
| 80 | Clinical e valuation of magnetic resonance imaging in coronary heart disease: The CE-MARC study.<br>Trials, 2009, 10, 62.                                                                                                                                                           | 1.6 | 54        |
| 81 | Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic<br>resonance: repeatability of measurements in healthy subjects. Journal of Cardiovascular Magnetic<br>Resonance, 2018, 20, 48.                                                        | 3.3 | 54        |
| 82 | The microvascular effects of insulin resistance and diabetes on cardiac structure, function, and perfusion: a cardiovascular magnetic resonance study. European Heart Journal Cardiovascular Imaging, 2014, 15, 1368-1376.                                                          | 1.2 | 53        |
| 83 | Sex-related differences in left ventricular remodeling in severe aortic stenosis and reverse<br>remodeling after aortic valve replacement: A cardiovascular magnetic resonance study. American<br>Heart Journal, 2016, 175, 101-111.                                                | 2.7 | 52        |
| 84 | Comparison of fast acquisition strategies in wholeâ€heart fourâ€dimensional flow cardiac MR:<br>Twoâ€center, 1.5 Tesla, phantom and in vivo validation study. Journal of Magnetic Resonance Imaging,<br>2018, 47, 272-281.                                                          | 3.4 | 52        |
| 85 | High-Resolution Versus Standard-Resolution Cardiovascular MR Myocardial Perfusion Imaging for the Detection of Coronary Artery Disease. Circulation: Cardiovascular Imaging, 2012, 5, 306-313.                                                                                      | 2.6 | 51        |
| 86 | Aortic Stiffness and Interstitial Myocardial Fibrosis by Native T1 Are Independently Associated With<br>Left Ventricular Remodeling in Patients With Dilated Cardiomyopathy. Hypertension, 2014, 64, 762-768.                                                                       | 2.7 | 50        |
| 87 | Firstâ€pass contrastâ€enhanced myocardial perfusion MRI in mice on a 3â€T clinical MR scanner. Magnetic<br>Resonance in Medicine, 2010, 64, 1592-1598.                                                                                                                              | 3.0 | 48        |
| 88 | Synergistic Adaptations to Exercise in the Systemic and Coronary Circulations That Underlie the<br>Warm-Up Angina Phenomenon. Circulation, 2012, 126, 2565-2574.                                                                                                                    | 1.6 | 48        |
| 89 | Qualitative and quantitative analysis of regional left ventricular wall dynamics using real-time magnetic resonance imaging: Comparison with conventional breath-hold gradient echo acquisition in volunteers and patients. Journal of Magnetic Resonance Imaging, 2001, 14, 23-30. | 3.4 | 47        |
| 90 | Training and accreditation in cardiovascular magnetic resonance in Europe: a position statement of the working group on cardiovascular magnetic resonance of the European Society of Cardiology.<br>European Heart Journal, 2011, 32, 793-798.                                      | 2.2 | 46        |

| #   | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Serial Change in Health-Related Quality of Life Over 1 Year After Transcatheter Aortic Valve<br>Implantation. Journal of the American College of Cardiology, 2012, 59, 1672-1680.                                                                               | 2.8  | 46        |
| 92  | Reproducibility of firstâ€pass cardiovascular magnetic resonance myocardial perfusion. Journal of<br>Magnetic Resonance Imaging, 2013, 37, 865-874.                                                                                                             | 3.4  | 46        |
| 93  | The distribution and prognosis of anomalous coronary arteries identified by cardiovascular magnetic<br>resonance: 15Âyear experience from two tertiary centres. Journal of Cardiovascular Magnetic<br>Resonance, 2014, 16, 34.                                  | 3.3  | 46        |
| 94  | Perfusion phantom: An efficient and reproducible method to simulate myocardial firstâ€pass perfusion<br>measurements with cardiovascular magnetic resonance. Magnetic Resonance in Medicine, 2013, 69,<br>698-707.                                              | 3.0  | 43        |
| 95  | Quantitative three-dimensional cardiovascular magnetic resonance myocardial perfusion imaging in systole and diastole. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 19.                                                                              | 3.3  | 43        |
| 96  | Visualization of coronary venous anatomy by cardiovascular magnetic resonance. Journal of<br>Cardiovascular Magnetic Resonance, 2009, 11, 26.                                                                                                                   | 3.3  | 42        |
| 97  | Impact of Age and Diastolic Function on Novel, 4D flow CMR Biomarkers of Left Ventricular Blood<br>Flow Kinetic Energy. Scientific Reports, 2018, 8, 14436.                                                                                                     | 3.3  | 42        |
| 98  | Relationship of dysglycemia to acute myocardial infarct size and cardiovascular outcome as<br>determined by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance,<br>2010, 12, 61.                                                   | 3.3  | 41        |
| 99  | Advanced Cardiovascular Magnetic Resonance Myocardial Perfusion Imaging. Circulation:<br>Cardiovascular Imaging, 2013, 6, 339-348.                                                                                                                              | 2.6  | 41        |
| 100 | Myocardial blood flow at rest and stress measured with dynamic contrastâ€enhanced MRI: Comparison<br>of a distributed parameter model with a fermi function model. Magnetic Resonance in Medicine, 2013,<br>70, 1591-1597.                                      | 3.0  | 41        |
| 101 | The role of non-invasive cardiovascular imaging in the assessment of cardiovascular risk in rheumatoid arthritis: where we are and where we need to be. Annals of the Rheumatic Diseases, 2017, 76, 1169-1175.                                                  | 0.9  | 41        |
| 102 | Cardiovascular magnetic resonance of myocardial edema using a short inversion time inversion recovery (STIR) black-blood technique: Diagnostic accuracy of visual and semi-quantitative assessment. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 22. | 3.3  | 40        |
| 103 | Increased cardiovascular mortality in African Americans with COVID-19. Lancet Respiratory Medicine,the, 2020, 8, 649-651.                                                                                                                                       | 10.7 | 40        |
| 104 | Estimates of systolic and diastolic myocardial blood flow by dynamic contrastâ€enhanced MRI.<br>Magnetic Resonance in Medicine, 2010, 64, 1696-1703.                                                                                                            | 3.0  | 39        |
| 105 | Quantitative analysis of transmural gradients in myocardial perfusion magnetic resonance images.<br>Magnetic Resonance in Medicine, 2011, 66, 1477-1487.                                                                                                        | 3.0  | 39        |
| 106 | Relationship between Myocardial Edema and Regional Myocardial Function after Reperfused Acute<br>Myocardial Infarction: An MR Imaging Study. Radiology, 2013, 267, 701-708.                                                                                     | 7.3  | 39        |
| 107 | Ischemic Burden by 3-Dimensional Myocardial Perfusion Cardiovascular Magnetic Resonance.<br>Circulation: Cardiovascular Imaging, 2014, 7, 647-654.                                                                                                              | 2.6  | 39        |
| 108 | Acute Infarct Extracellular Volume Mapping to Quantify Myocardial Area at Risk and Chronic Infarct<br>Size on Cardiovascular Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2017, 10, .                                                       | 2.6  | 39        |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods. Journal of<br>Cardiovascular Magnetic Resonance, 2008, 10, 29.                                                                                                 | 3.3 | 38        |
| 110 | Empagliflozin Treatment Is Associated With Improvements in Cardiac Energetics and Function and Reductions in Myocardial Cellular Volume in Patients With Type 2 Diabetes. Diabetes, 2021, 70, 2810-2822.                                         | 0.6 | 36        |
| 111 | Cardiovascular magnetic resonance of scar and ischemia burden early after acute ST elevation and<br>non-ST elevation myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 47.                                          | 3.3 | 35        |
| 112 | Clinical Feasibility of Accelerated, High Spatial Resolution Myocardial Perfusion Imaging. JACC:<br>Cardiovascular Imaging, 2010, 3, 710-717.                                                                                                    | 5.3 | 35        |
| 113 | Relationship of cardiac biomarkers and reversible and irreversible myocardial injury following acute<br>myocardial infarction as determined by cardiovascular magnetic resonance. International Journal of<br>Cardiology, 2013, 166, 458-464.    | 1.7 | 35        |
| 114 | Quantitative myocardial perfusion in coronary artery disease: A perfusion mapping study. Journal of<br>Magnetic Resonance Imaging, 2019, 50, 756-762.                                                                                            | 3.4 | 35        |
| 115 | Chronic infarct size after spontaneous coronary artery dissection: implications for pathophysiology and clinical management. European Heart Journal, 2020, 41, 2197-2205.                                                                        | 2.2 | 35        |
| 116 | Left atrial voltage, circulating biomarkers of fibrosis, and atrial fibrillation ablation. A prospective cohort study. PLoS ONE, 2018, 13, e0189936.                                                                                             | 2.5 | 34        |
| 117 | Simultaneous multi slice (SMS) balanced steady state free precession first-pass myocardial perfusion<br>cardiovascular magnetic resonance with iterative reconstruction at 1.5ÂT. Journal of Cardiovascular<br>Magnetic Resonance, 2018, 20, 84. | 3.3 | 33        |
| 118 | Reproducibility of myocardial strain and left ventricular twist measured using complementary spatial modulation of magnetization. Journal of Magnetic Resonance Imaging, 2014, 39, 887-894.                                                      | 3.4 | 32        |
| 119 | Appropriateness criteria for cardiovascular imaging use in clinical practice: a position statement of the ESC/EACVI taskforce. European Heart Journal Cardiovascular Imaging, 2014, 15, 477-482.                                                 | 1.2 | 32        |
| 120 | Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile<br>function in hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2017, 19, 16.                                            | 3.3 | 32        |
| 121 | Quantitative Myocardial Perfusion in Fabry Disease. Circulation: Cardiovascular Imaging, 2019, 12, e008872.                                                                                                                                      | 2.6 | 32        |
| 122 | Sex and Heart Failure with Preserved Ejection Fraction: From Pathophysiology to Clinical Studies.<br>Journal of Clinical Medicine, 2019, 8, 792.                                                                                                 | 2.4 | 32        |
| 123 | Cardiovascular effects of biological versus conventional synthetic disease-modifying antirheumatic drug therapy in treatment-naà ve, early rheumatoid arthritis. Annals of the Rheumatic Diseases, 2020, 79, 1414-1422.                          | 0.9 | 32        |
| 124 | Automated Inline Analysis of Myocardial Perfusion MRI with Deep Learning. Radiology: Artificial<br>Intelligence, 2020, 2, e200009.                                                                                                               | 5.8 | 32        |
| 125 | Multimodality imaging of myocardial viability: an expert consensus document from the European<br>Association of Cardiovascular Imaging (EACVI). European Heart Journal Cardiovascular Imaging, 2021,<br>22, e97-e125.                            | 1.2 | 32        |
| 126 | Construction and validation of anisotropic and orthotropic ventricular geometries for quantitative predictive cardiac electrophysiology. Interface Focus, 2011, 1, 101-116.                                                                      | 3.0 | 31        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Incidental significant arrhythmia in scleroderma associates with cardiac magnetic resonance measure of fibrosis and hs-TnI and NT-proBNP. Rheumatology, 2019, 58, 1221-1226.                                                                                                                                                                                                                | 1.9  | 31        |
| 128 | Role of cardiovascular magnetic resonance imaging in cardio-oncology. European Heart Journal<br>Cardiovascular Imaging, 2021, 22, 383-396.                                                                                                                                                                                                                                                  | 1.2  | 31        |
| 129 | Systolic versus Diastolic Acquisition in Myocardial Perfusion MR Imaging. Radiology, 2012, 262, 816-823.                                                                                                                                                                                                                                                                                    | 7.3  | 30        |
| 130 | Quantitative cardiovascular magnetic resonance perfusion imaging: inter-study reproducibility.<br>European Heart Journal Cardiovascular Imaging, 2012, 13, 954-960.                                                                                                                                                                                                                         | 1.2  | 30        |
| 131 | Non-invasive cardiac imaging evaluation of patients with chronic systolic heart failure: a report from the European Association of Cardiovascular Imaging (EACVI). European Heart Journal, 2014, 35, 3417-3425.                                                                                                                                                                             | 2.2  | 30        |
| 132 | Synthetic Myocardial Extracellular VolumeÂFraction. JACC: Cardiovascular Imaging, 2017, 10, 1402-1404.                                                                                                                                                                                                                                                                                      | 5.3  | 30        |
| 133 | Current perspectives in coronary microvascular dysfunction. Microcirculation, 2017, 24, e12340.                                                                                                                                                                                                                                                                                             | 1.8  | 30        |
| 134 | Cardiovascular magnetic resonance evaluation of symptomatic severe aortic stenosis: association of circumferential myocardial strain and mortality. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 13.                                                                                                                                                                             | 3.3  | 30        |
| 135 | Assessment of Multivessel Coronary Artery Disease Using Cardiovascular Magnetic Resonance<br>Pixelwise Quantitative Perfusion Mapping. JACC: Cardiovascular Imaging, 2020, 13, 2546-2557.                                                                                                                                                                                                   | 5.3  | 30        |
| 136 | Predicting myocardial infarction through retinal scans and minimal personal information. Nature Machine Intelligence, 2022, 4, 55-61.                                                                                                                                                                                                                                                       | 16.0 | 30        |
| 137 | Consequence of Cerebral Embolism After Transcatheter Aortic Valve Implantation Compared With<br>Contemporary Surgical Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 2015, 8,<br>e001913.                                                                                                                                                                             | 3.9  | 29        |
| 138 | Acute Reverse Remodelling After Transcatheter Aortic Valve Implantation: A Link Between Myocardial<br>Fibrosis and Left Ventricular Mass Regression. Canadian Journal of Cardiology, 2016, 32, 1411-1418.                                                                                                                                                                                   | 1.7  | 29        |
| 139 | Coronary MR angiography at 3T: fat suppression versus water-fat separation. Magnetic Resonance<br>Materials in Physics, Biology, and Medicine, 2016, 29, 733-738.                                                                                                                                                                                                                           | 2.0  | 29        |
| 140 | Myocardial strain and symptom severity in severe aortic stenosis: insights from cardiovascular magnetic resonance. Quantitative Imaging in Medicine and Surgery, 2017, 7, 38-47.                                                                                                                                                                                                            | 2.0  | 29        |
| 141 | Hybrid positron emission tomography–magnetic resonance of the heart: current state of the art and future applications. European Heart Journal Cardiovascular Imaging, 2018, 19, 962-974.                                                                                                                                                                                                    | 1.2  | 29        |
| 142 | Non-invasive imaging in coronary syndromes: recommendations of the European Association of<br>Cardiovascular Imaging and the American Society of Echocardiography, in collaboration with the<br>American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and<br>Society for Cardiovascular Magnetic Resonance. European Heart Journal Cardiovascular Imaging, | 1.2  | 29        |
| 143 | 2022, 23, e6-e33.<br>Pharmacokinetic modeling of delayed gadolinium enhancement in the myocardium. Magnetic<br>Resonance in Medicine, 2008, 60, 1524-1530.                                                                                                                                                                                                                                  | 3.0  | 28        |
| 144 | Extra-cellular expansion in the normal, non-infarcted myocardium is associated with worsening of<br>regional myocardial function after acute myocardial infarction. Journal of Cardiovascular Magnetic<br>Resonance, 2016, 19, 73.                                                                                                                                                          | 3.3  | 28        |

| #   | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Cardiac perfusion, structure, and function in type 2 diabetes mellitus with and without diabetic complications. European Heart Journal Cardiovascular Imaging, 2020, 21, 887-895.                                                                                                    | 1.2 | 28        |
| 146 | Coronary Wave Energy. Circulation: Cardiovascular Interventions, 2013, 6, 166-175.                                                                                                                                                                                                   | 3.9 | 27        |
| 147 | Cardiac remodelling and function with primary mitral valve insufficiency studied by magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2016, 17, 863-870.                                                                                                    | 1.2 | 27        |
| 148 | Automatic inâ€line quantitative myocardial perfusion mapping: Processing algorithm and implementation. Magnetic Resonance in Medicine, 2020, 83, 712-730.                                                                                                                            | 3.0 | 27        |
| 149 | Sex Differences in Aortic Stenosis and Outcome Following Surgical and Transcatheter Aortic Valve Replacement. Journal of Women's Health, 2015, 24, 986-995.                                                                                                                          | 3.3 | 26        |
| 150 | Relationship between cardiac deformation parameters measured by cardiovascular magnetic<br>resonance and aerobic fitness in endurance athletes. Journal of Cardiovascular Magnetic Resonance,<br>2016, 18, 48.                                                                       | 3.3 | 26        |
| 151 | Assessment of aortic stiffness by cardiovascular magnetic resonance following the treatment of severe aortic stenosis by TAVI and surgical AVR. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 37.                                                                          | 3.3 | 26        |
| 152 | Inline perfusion mapping provides insights into the disease mechanism in hypertrophic cardiomyopathy. Heart, 2020, 106, 824-829.                                                                                                                                                     | 2.9 | 26        |
| 153 | Rationale and design of the Clinical Evaluation of Magnetic Resonance Imaging in Coronary heart disease 2 trial (CE-MARC 2): A prospective, multicenter, randomized trial of diagnostic strategies in suspected coronary heart disease. American Heart Journal, 2015, 169, 17-24.e1. | 2.7 | 25        |
| 154 | Assessment of atrial fibrosis for the rhythm control of atrial fibrillation. International Journal of<br>Cardiology, 2016, 220, 155-161.                                                                                                                                             | 1.7 | 25        |
| 155 | Factors associated with falseâ€negative cardiovascular magnetic resonance perfusion studies: A<br>Clinical evaluation of magnetic resonance imaging in coronary artery disease (CEâ€MARC) substudy.<br>Journal of Magnetic Resonance Imaging, 2016, 43, 566-573.                     | 3.4 | 25        |
| 156 | Reduced Myocardial Perfusion Reserve in Type 2 Diabetes Is Caused by Increased Perfusion at Rest and<br>Decreased Maximal Perfusion During Stress. Diabetes Care, 2020, 43, 1285-1292.                                                                                               | 8.6 | 25        |
| 157 | Primary systemic sclerosis heart involvement: A systematic literature review and preliminary data-driven, consensus-based WSF/HFA definition. Journal of Scleroderma and Related Disorders, 2022, 7, 24-32.                                                                          | 1.7 | 25        |
| 158 | Serum 25 hydroxy-vitamin D does not exhibit an acute phase reaction after acute myocardial infarction. Annals of Clinical Biochemistry, 2012, 49, 399-401.                                                                                                                           | 1.6 | 24        |
| 159 | Fractional flow reserve as the reference standard for myocardial perfusion studies: fool's gold?.<br>European Heart Journal Cardiovascular Imaging, 2013, 14, 1211-1213.                                                                                                             | 1.2 | 24        |
| 160 | Standard and emerging CMR methods for mitral regurgitation quantification. International Journal of Cardiology, 2021, 331, 316-321.                                                                                                                                                  | 1.7 | 24        |
| 161 | Virtual tissue engineering of the human atrium: Modelling pharmacological actions on atrial arrhythmogenesis. European Journal of Pharmaceutical Sciences, 2012, 46, 209-221.                                                                                                        | 4.0 | 23        |
| 162 | Intra-cardiac and peripheral levels of biochemical markers of fibrosis in patients undergoing catheter<br>ablation for atrial fibrillation. Europace, 2017, 19, 1944-1950.                                                                                                           | 1.7 | 23        |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Standardization of Preclinical PET/CT Imaging to Improve Quantitative Accuracy, Precision, and Reproducibility: A Multicenter Study. Journal of Nuclear Medicine, 2020, 61, 461-468.                                                                              | 5.0 | 23        |
| 164 | T1 mapping performance and measurement repeatability: results from the multi-national T1 mapping standardization phantom program (T1MES). Journal of Cardiovascular Magnetic Resonance, 2020, 22, 31.                                                             | 3.3 | 23        |
| 165 | Motionâ€compensated gradient waveforms for tensorâ€valued diffusion encoding by constrained numerical optimization. Magnetic Resonance in Medicine, 2021, 85, 2117-2126.                                                                                          | 3.0 | 23        |
| 166 | Update of the European Association of Cardiovascular Imaging (EACVI) Core Syllabus for the European<br>Cardiovascular Magnetic Resonance Certification Exam. European Heart Journal Cardiovascular<br>Imaging, 2014, 15, 728-729.                                 | 1.2 | 21        |
| 167 | Aortic remodelling following the treatment and regression of hypertensive left ventricular<br>hypertrophy: a cardiovascular magnetic resonance study. Clinical and Experimental Hypertension,<br>2015, 37, 308-316.                                               | 1.3 | 21        |
| 168 | The utility of global longitudinal strain in the identification of prior myocardial infarction in patients with preserved left ventricular ejection fraction. International Journal of Cardiovascular Imaging, 2017, 33, 1561-1569.                               | 1.5 | 21        |
| 169 | Physiology of Angina and Its Alleviation With Nitroglycerin. Circulation, 2017, 136, 24-34.                                                                                                                                                                       | 1.6 | 21        |
| 170 | The impact of trans-catheter aortic valve replacement induced left-bundle branch block on cardiac reverse remodeling. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 22.                                                                                 | 3.3 | 21        |
| 171 | Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia.<br>JACC: Cardiovascular Imaging, 2018, 11, 711-718.                                                                                                           | 5.3 | 21        |
| 172 | Myocardial Effects of Aldosterone Antagonism in Heart Failure With Preserved Ejection Fraction.<br>Journal of the American Heart Association, 2020, 9, e011521.                                                                                                   | 3.7 | 21        |
| 173 | Cardiac Imaging in the Post-ISCHEMIA Trial Era. JACC: Cardiovascular Imaging, 2020, 13, 1815-1833.                                                                                                                                                                | 5.3 | 21        |
| 174 | Quality assurance of quantitative cardiac T1-mapping in multicenter clinical trials – A T1 phantom<br>program from the hypertrophic cardiomyopathy registry (HCMR) study. International Journal of<br>Cardiology, 2021, 330, 251-258.                             | 1.7 | 21        |
| 175 | 30-minute CMR for common clinical indications:ÂaÂSociety for Cardiovascular Magnetic Resonance<br>white paper. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 13.                                                                                        | 3.3 | 21        |
| 176 | Endocardial and epicardial myocardial perfusion determined by semi-quantitative and quantitative<br>myocardial perfusion magnetic resonance. International Journal of Cardiovascular Imaging, 2012, 28,<br>1499-1511.                                             | 1.5 | 20        |
| 177 | Advances in cardiovascular magnetic resonance in ischaemic heart disease and non-ischaemic cardiomyopathies. Heart, 2014, 100, 1722-1733.                                                                                                                         | 2.9 | 20        |
| 178 | Assessment of ischaemic burden in angiographic three-vessel coronary artery disease with<br>high-resolution myocardial perfusion cardiovascular magnetic resonance imaging. European Heart<br>Journal Cardiovascular Imaging, 2014, 15, 701-708.                  | 1.2 | 20        |
| 179 | Motionâ€compensated bâ€tensor encoding for in vivo cardiac diffusionâ€weighted imaging. NMR in<br>Biomedicine, 2020, 33, e4213.                                                                                                                                   | 2.8 | 20        |
| 180 | Susceptibility-weighted cardiovascular magnetic resonance in comparison to T2 and T2 star imaging<br>for detection of intramyocardial hemorrhage following acute myocardial infarction at 3 Tesla.<br>Journal of Cardiovascular Magnetic Resonance, 2014, 16, 86. | 3.3 | 19        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Cardiovascular imaging practice in Europe: a report from the European Association of Cardiovascular<br>Imaging. European Heart Journal Cardiovascular Imaging, 2015, 16, 697-702.                                                                                            | 1.2 | 19        |
| 182 | Automated detection of left ventricle in arterial input function images for inline perfusion mapping<br>using deep learning: A study of 15,000 patients. Magnetic Resonance in Medicine, 2020, 84, 2788-2800.                                                                | 3.0 | 19        |
| 183 | Effects Of Missing Dynamic Images On Myocardial Perfusion Reserve Index Calculation: Comparison<br>Between An Every Heartbeat And An Alternate Heartbeat Acquisition#. Journal of Cardiovascular<br>Magnetic Resonance, 2003, 5, 343-352.                                    | 3.3 | 19        |
| 184 | Coronary Artery Disease Evaluation in Rheumatoid Arthritis (CADERA): study protocol for a randomized controlled trial. Trials, 2014, 15, 436.                                                                                                                                | 1.6 | 18        |
| 185 | Single bolus versus split dose gadolinium administration in extra-cellular volume calculation at 3<br>Tesla. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 6.                                                                                                      | 3.3 | 18        |
| 186 | The role of left ventricular deformation in the assessment of microvascular obstruction and intramyocardial haemorrhage. International Journal of Cardiovascular Imaging, 2017, 33, 361-370.                                                                                 | 1.5 | 18        |
| 187 | Multimodality imaging for the quantitative assessment of mitral regurgitation. Quantitative Imaging in Medicine and Surgery, 2018, 8, 342-359.                                                                                                                               | 2.0 | 18        |
| 188 | Regression of Left Ventricular Mass in Athletes Undergoing Complete Detraining Is Mediated by<br>Decrease in Intracellular but Not Extracellular Compartments. Circulation: Cardiovascular Imaging,<br>2019, 12, e009417.                                                    | 2.6 | 18        |
| 189 | Predictors of subclinical systemic sclerosis primary heart involvement characterised by microvasculopathy and myocardial fibrosis. Rheumatology, 2021, 60, 2934-2945.                                                                                                        | 1.9 | 18        |
| 190 | The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 tesla cardiovascular magnetic resonance imaging. Quantitative Imaging in Medicine and Surgery, 2015, 5, 503-10.                                       | 2.0 | 18        |
| 191 | Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques. World Journal of Cardiology, 2017, 9, 92.                                                                                                        | 1.5 | 18        |
| 192 | Measurement of left ventricular dimensions with contrast-enhanced three-dimensional cine imaging facilitated by k-t SENSE. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 27.                                                                                       | 3.3 | 17        |
| 193 | Effect of improving spatial or temporal resolution on image quality and quantitative perfusion<br>assessment with <i>kâ€t</i> SENSE acceleration in firstâ€pass CMR myocardial perfusion imaging.<br>Magnetic Resonance in Medicine, 2010, 64, 1616-1624.                    | 3.0 | 17        |
| 194 | Diagnostic Value of CMR in Patients With Biomarker-Positive Acute Chest Pain and Unobstructed Coronary Arteries. JACC: Cardiovascular Imaging, 2010, 3, 661-664.                                                                                                             | 5.3 | 17        |
| 195 | Cardiac MR Imaging to Measure Myocardial Blood Flow Response to the Cold Pressor Test in Healthy<br>Smokers and Nonsmokers. Radiology, 2014, 270, 82-90.                                                                                                                     | 7.3 | 17        |
| 196 | Role of Cardiac T1 Mapping and Extracellular Volume (ECV) in the Assessment of Myocardial<br>Infarction. Anatolian Journal of Cardiology, 2018, 19, 404-411.                                                                                                                 | 0.9 | 17        |
| 197 | Color-Encoded Semiautomatic Analysis of Multi-Slice First-Pass Magnetic Resonance Perfusion:<br>Comparison to Tetrofosmin Single Photon Emission Computed Tomography Perfusion and X-Ray<br>Angiography. International Journal of Cardiovascular Imaging, 2004, 20, 371-384. | 0.6 | 16        |
| 198 | Three-dimensional balanced steady state free precession myocardial perfusion cardiovascular<br>magnetic resonance at 3T using dual-source parallel RF transmission: initial experience. Journal of<br>Cardiovascular Magnetic Resonance, 2014, 16, 90.                       | 3.3 | 16        |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | 3.0T, time-resolved, 3D flow-sensitive MR in the thoracic aorta: Impact of <i>k-t</i> BLAST acceleration using 8- versus 32-channel coil arrays. Journal of Magnetic Resonance Imaging, 2015, 42, 495-504.                                                                | 3.4 | 16        |
| 200 | Quantification of myocardial blood flow with cardiovascular magnetic resonance throughout the cardiac cycle. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 4.                                                                                                   | 3.3 | 16        |
| 201 | A comparison of cardiovascular magnetic resonance and single photon emission computed<br>tomography (SPECT) perfusion imaging in left main stem or equivalent coronary artery disease: a<br>CE-MARC substudy. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 84. | 3.3 | 16        |
| 202 | Rapid Cardiovascular Magnetic Resonance for Ischemic Heart Disease Investigation (RAPID-IHD). JACC:<br>Cardiovascular Imaging, 2020, 13, 1632-1634.                                                                                                                       | 5.3 | 16        |
| 203 | Cardiovascular magnetic resonance imaging: emerging techniques and applications. Heart, 2021, 107, 697-704.                                                                                                                                                               | 2.9 | 16        |
| 204 | Multimodality imaging approach to left ventricular dysfunction in diabetes: an expert consensus<br>document from the European Association of Cardiovascular Imaging. European Heart Journal<br>Cardiovascular Imaging, 2022, 23, e62-e84.                                 | 1.2 | 16        |
| 205 | A Novel and Practical Screening Tool for the Detection of Silent Myocardial Infarction in Patients<br>With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3316-3323.                                                                       | 3.6 | 15        |
| 206 | Cardiovascular magnetic resonance measures of aortic stiffness in asymptomatic patients with type 2<br>diabetes: association with glycaemic control and clinical outcomes. Cardiovascular Diabetology,<br>2018, 17, 35.                                                   | 6.8 | 15        |
| 207 | Role of cardiovascular magnetic resonance in the management of patients with stable coronary artery disease. Heart, 2018, 104, 888-894.                                                                                                                                   | 2.9 | 15        |
| 208 | First cardiovascular MRI study in individuals at risk of rheumatoid arthritis detects abnormal aortic stiffness suggesting an anti-citrullinated peptide antibody-mediated role for accelerated atherosclerosis. Annals of the Rheumatic Diseases, 2019, 78, 1138-1140.   | 0.9 | 15        |
| 209 | Clinical evaluation of two dark blood methods of late gadolinium quantification of ischemic scar.<br>Journal of Magnetic Resonance Imaging, 2019, 50, 146-152.                                                                                                            | 3.4 | 15        |
| 210 | Quantitative cardiovascular magnetic resonance myocardial perfusion mapping to assess hyperaemic response to adenosine stress. European Heart Journal Cardiovascular Imaging, 2021, 22, 273-281.                                                                          | 1.2 | 15        |
| 211 | SAUN: Stack attention Uâ€Net for left ventricle segmentation from cardiac cine magnetic resonance imaging. Medical Physics, 2021, 48, 1750-1763.                                                                                                                          | 3.0 | 15        |
| 212 | Non-invasive imaging as the cornerstone of cardiovascular precision medicine. European Heart<br>Journal Cardiovascular Imaging, 2022, 23, 465-475.                                                                                                                        | 1.2 | 15        |
| 213 | Isolated Left Ventricular Apical Hypoplasia Evaluated by Cardiovascular Magnetic Resonance and<br>Gadolinium Enhancement Techniques. Journal of the American College of Cardiology, 2011, 58, 2355.                                                                       | 2.8 | 14        |
| 214 | Individual component analysis of the multi-parametric cardiovascular magnetic resonance protocol<br>in the CE-MARC trial. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 59.                                                                                     | 3.3 | 14        |
| 215 | Sensitivity of quantitative myocardial dynamic contrastâ€enhanced MRI to saturation pulse efficiency, noise and t 1 measurement error: Comparison of nonlinearity correction methods. Magnetic Resonance in Medicine, 2016, 75, 1290-1300.                                | 3.0 | 14        |
| 216 | Right ventricular function following surgical aortic valve replacement and transcatheter aortic<br>valve implantation: A cardiovascular MR study. International Journal of Cardiology, 2016, 223, 639-644.                                                                | 1.7 | 14        |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Noninvasive cardiac imaging in suspected acute coronary syndrome. Nature Reviews Cardiology, 2016, 13, 266-275.                                                                                                                               | 13.7 | 14        |
| 218 | The 2016 update to NICE CG95 guideline for the Âinvestigation of new onset stable chest pain: more<br>Âinnovation, but at a cost?. Clinical Medicine, 2017, 17, 209-211.                                                                      | 1.9  | 14        |
| 219 | Circulating biomarkers of fibrosis and cardioversion of atrial fibrillation: A prospective, controlled cohort study. Clinical Biochemistry, 2017, 50, 11-15.                                                                                  | 1.9  | 14        |
| 220 | The Year in Cardiology 2018: imaging. European Heart Journal, 2019, 40, 508-517.                                                                                                                                                              | 2.2  | 14        |
| 221 | Fibroblast growth factor-23 is associated with imaging markers of diabetic cardiomyopathy and anti-diabetic therapeutics. Cardiovascular Diabetology, 2020, 19, 158.                                                                          | 6.8  | 14        |
| 222 | Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 62.                               | 3.3  | 13        |
| 223 | Robust myocardial T <sub>2</sub> and T <sub>2</sub> * mapping at 3T using imageâ€based shimming.<br>Journal of Magnetic Resonance Imaging, 2015, 41, 1013-1020.                                                                               | 3.4  | 13        |
| 224 | Age-associated changes in 4D flow CMR derived Tricuspid Valvular Flow and Right Ventricular Blood<br>Flow Kinetic Energy. Scientific Reports, 2020, 10, 9908.                                                                                 | 3.3  | 13        |
| 225 | Society for Cardiovascular Magnetic Resonance (SCMR) guidance for re-activation of cardiovascular<br>magnetic resonance practice after peak phase of the COVID-19 pandemic. Journal of Cardiovascular<br>Magnetic Resonance, 2020, 22, 58.    | 3.3  | 13        |
| 226 | Insight Into Myocardial Microstructure of Athletes and Hypertrophic Cardiomyopathy Patients Using Diffusion Tensor Imaging. Journal of Magnetic Resonance Imaging, 2021, 53, 73-82.                                                           | 3.4  | 13        |
| 227 | Acute Microstructural Changes after ST-Segment Elevation Myocardial Infarction Assessed with Diffusion Tensor Imaging. Radiology, 2021, 299, 86-96.                                                                                           | 7.3  | 13        |
| 228 | Invasive and non-invasive assessment of ischaemia in chronic coronary syndromes: translating pathophysiology to clinical practice. European Heart Journal, 2022, 43, 105-117.                                                                 | 2.2  | 13        |
| 229 | The role of cardiovascular magnetic resonance in the evaluation of acute myocarditis and<br>inflammatory cardiomyopathies in clinical practice — a comprehensive review. European Heart Journal<br>Cardiovascular Imaging, 2022, 23, 450-464. | 1.2  | 13        |
| 230 | The role of positron emission tomography in cardiology. Radiography, 2001, 7, 11-20.                                                                                                                                                          | 2.1  | 12        |
| 231 | Reciprocal ECG change in reperfused ST-elevation myocardial infarction is associated with myocardial salvage and area at risk assessed by cardiovascular magnetic resonance. Heart, 2013, 99, 1658-1662.                                      | 2.9  | 12        |
| 232 | Three-dimensional whole-heart vs. two-dimensional high-resolution perfusion-CMR: a pilot study<br>comparing myocardial ischaemic burden. European Heart Journal Cardiovascular Imaging, 2016, 17,<br>900-908.                                 | 1.2  | 12        |
| 233 | Left atrial size and function in a South Asian population and their potential influence on the risk of atrial fibrillation. Clinical Cardiology, 2018, 41, 1379-1385.                                                                         | 1.8  | 12        |
| 234 | Comprehensive assessment of hypertensive heart disease: cardiac magnetic resonance in focus. Heart<br>Failure Reviews, 2021, 26, 1383-1390.                                                                                                   | 3.9  | 12        |

| #   | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Imaging, biomarker and invasive assessment of diffuse left ventricular myocardial fibrosis in atrial fibrillation. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 13.                                                                                                                        | 3.3 | 12        |
| 236 | Cost-effectiveness of cardiovascular imaging for stable coronary heart disease. Heart, 2021, 107, 381-388.                                                                                                                                                                                            | 2.9 | 12        |
| 237 | Phenotyping hypertrophic cardiomyopathy using cardiac diffusion magnetic resonance imaging: the relationship between microvascular dysfunction and microstructural changes. European Heart Journal Cardiovascular Imaging, 2022, 23, 352-362.                                                         | 1.2 | 12        |
| 238 | The Coumadin Ridge: An Important Example of a Left Atrial Pseudotumour demonstrated by<br>Cardiovascular Magnetic Resonance Imaging. Journal of Radiology Case Reports, 2009, 3, 1-5.                                                                                                                 | 0.4 | 11        |
| 239 | The role of cardiovascular magnetic resonance in the assessment of severe aortic stenosis and in post-procedural evaluation following transcatheter aortic valve implantation and surgical aortic valve replacement. Quantitative Imaging in Medicine and Surgery, 2016, 6, 259-273.                  | 2.0 | 11        |
| 240 | Taxonomy of segmental myocardial systolic dysfunction. European Heart Journal, 2017, 38, ehw140.                                                                                                                                                                                                      | 2.2 | 11        |
| 241 | Feasibility study of a single breathâ€hold, 3D mDIXON pulse sequence for late gadolinium enhancement<br>imaging of ischemic scar. Journal of Magnetic Resonance Imaging, 2019, 49, 1437-1445.                                                                                                         | 3.4 | 11        |
| 242 | A comparison of standard and high dose adenosine protocols in routine vasodilator stress cardiovascular magnetic resonance: dosage affects hyperaemic myocardial blood flow in patients with severe left ventricular systolic impairment. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 37. | 3.3 | 11        |
| 243 | Role of T1 Mapping in Inherited Cardiomyopathies. European Cardiology Review, 2016, 11, 96.                                                                                                                                                                                                           | 2.2 | 11        |
| 244 | Cardiovascular outcomes in systemic sclerosis with abnormal cardiovascular MRI and serum cardiac biomarkers. RMD Open, 2021, 7, e001689.                                                                                                                                                              | 3.8 | 11        |
| 245 | Tolerance of MRI vs. SPECT myocardial perfusion studies?A patient survey. Journal of Magnetic<br>Resonance Imaging, 2004, 19, 410-416.                                                                                                                                                                | 3.4 | 10        |
| 246 | Caseous calcification of the mitral valve complicated by embolization, mitral regurgitation, and pericardial constriction. European Heart Journal Cardiovascular Imaging, 2012, 13, 792-792.                                                                                                          | 1.2 | 10        |
| 247 | CMR quantitation of change in mitral regurgitation following transcatheter aortic valve<br>replacement (TAVR): impact on left ventricular reverse remodeling and outcome. International<br>Journal of Cardiovascular Imaging, 2019, 35, 161-170.                                                      | 1.5 | 10        |
| 248 | Multisystem inflammatory syndrome in an adult with SARS-CoV-2 infection. European Heart Journal<br>Cardiovascular Imaging, 2021, 22, e17-e17.                                                                                                                                                         | 1.2 | 10        |
| 249 | Impact of age, sex and ethnicity on intra-cardiac flow components and left ventricular kinetic energy derived from 4D flow CMR. International Journal of Cardiology, 2021, 336, 105-112.                                                                                                              | 1.7 | 10        |
| 250 | Simultaneous 13N-Ammonia and gadolinium first-pass myocardial perfusion with quantitative hybrid<br>PET-MR imaging: a phantom and clinical feasibility study. European Journal of Hybrid Imaging, 2019, 3, 15.                                                                                        | 1.5 | 10        |
| 251 | High-resolution non-contrast free-breathing coronary cardiovascularÃ,Âmagnetic resonance<br>angiography for detection of coronary artery disease: validation against invasive coronary<br>angiography. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 26.                                    | 3.3 | 10        |
| 252 | Simplifying cardiovascular magnetic resonance pulse sequence terminology. Journal of<br>Cardiovascular Magnetic Resonance, 2014, 16, 3960.                                                                                                                                                            | 3.3 | 9         |

| #   | Article                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Predictive power of late gadolinium enhancement for myocardial recovery in chronic ischaemic heart<br>failure: a HEART subâ€study. ESC Heart Failure, 2014, 1, 146-153.                                                                                                                         | 3.1  | 9         |
| 254 | Trivalent Gd-DOTA reagents for modification of proteins. RSC Advances, 2015, 5, 96194-96200.                                                                                                                                                                                                    | 3.6  | 9         |
| 255 | Multi-centre study of whole-heart dynamic 3D cardiac magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: gender based analysis of diagnostic performance. European Heart Journal Cardiovascular Imaging, 2017, 18, 1099-1106. | 1.2  | 9         |
| 256 | P wave indices, heart rate variability and anthropometry in a healthy South Asian population. PLoS ONE, 2019, 14, e0220662.                                                                                                                                                                     | 2.5  | 9         |
| 257 | Diffusion tensor imaging in cubital tunnel syndrome. Scientific Reports, 2021, 11, 14982.                                                                                                                                                                                                       | 3.3  | 9         |
| 258 | Cardiovascular Magnetic Resonance and Single-Photon Emission Computed Tomography in Suspected<br>Coronary Heart Disease. Annals of Internal Medicine, 2016, 165, 830.                                                                                                                           | 3.9  | 9         |
| 259 | Measurements of left ventricular dimensions using real-time acquisition in cardiac magnetic<br>resonance imaging: comparison with conventional gradient echo imaging. Magnetic Resonance<br>Materials in Physics, Biology, and Medicine, 2001, 13, 101-108.                                     | 2.0  | 8         |
| 260 | Contribution of Noninvasive Imaging to the Diagnosis and Follow-Up of Takotsubo Cardiomyopathy.<br>JACC: Cardiovascular Imaging, 2009, 2, 519-521.                                                                                                                                              | 5.3  | 8         |
| 261 | Cardiac magnetic resonance imaging for the detection of myocardial involvement in granulomatosis with polyangiitis. International Journal of Cardiovascular Imaging, 2021, 37, 1053-1062.                                                                                                       | 1.5  | 8         |
| 262 | How to do quantitative myocardial perfusion cardiovascular magnetic resonance. European Heart<br>Journal Cardiovascular Imaging, 2022, 23, 315-318.                                                                                                                                             | 1.2  | 8         |
| 263 | Established and emerging cardiovascular magnetic resonance techniques for the assessment of stable coronary heart disease and acute coronary syndromes. Quantitative Imaging in Medicine and Surgery, 2014, 4, 330-44.                                                                          | 2.0  | 8         |
| 264 | Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 25.                                                                                                       | 3.3  | 8         |
| 265 | The detection of normal, ischemic and infarcted myocardial tissue using MRI. International Congress Series, 2003, 1256, 1153-1158.                                                                                                                                                              | 0.2  | 7         |
| 266 | Cardiac MR Imaging with External Respirator: Synchronizing Cardiac and Respiratory<br>Motion—Feasibility Study. Radiology, 2003, 227, 877-882.                                                                                                                                                  | 7.3  | 7         |
| 267 | Comparison of Clinical Efficacy and Cost of a Cardiac Imaging Strategy Versus a Traditional Exercise<br>Test Strategy for the Investigation of Patients With Suspected Stable Coronary Artery Disease.<br>American Journal of Cardiology, 2015, 115, 1631-1635.                                 | 1.6  | 7         |
| 268 | Detection of intramyocardial haemorrhage by MRI—no single rule. Nature Reviews Cardiology, 2015,<br>12, 198-198.                                                                                                                                                                                | 13.7 | 7         |
| 269 | Free-Wall Rupture Post–Reperfused Acute Myocardial Infarction. Circulation, 2015, 132, e245-7.                                                                                                                                                                                                  | 1.6  | 7         |
| 270 | Ventricular longitudinal function is associated with microvascular obstruction and intramyocardial haemorrhage. Open Heart, 2016, 3, e000337.                                                                                                                                                   | 2.3  | 7         |

| #   | Article                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Quantitative deformation analysis differentiates ischaemic and non-ischaemic cardiomyopathy:<br>sub-group analysis of the VINDICATE trial. European Heart Journal Cardiovascular Imaging, 2018, 19,<br>816-823.                                                                                                         | 1.2 | 7         |
| 272 | Cardiovascular MRI evidence of reduced systolic function and reduced LV mass in rheumatoid<br>arthritis: impact of disease phenotype. International Journal of Cardiovascular Imaging, 2020, 36,<br>491-501.                                                                                                            | 1.5 | 7         |
| 273 | Feasibility and validation of trans-valvular flow derived by four-dimensional flow cardiovascular magnetic resonance imaging in patients with atrial fibrillation. Wellcome Open Research, 2021, 6, 73.                                                                                                                 | 1.8 | 7         |
| 274 | Post-procedural myocardial infarction following surgical aortic valve replacement and transcatheter aortic valve implantation. EuroIntervention, 2017, 13, e153-e160.                                                                                                                                                   | 3.2 | 7         |
| 275 | Coronary microvascular function and visceral adiposity in patients with normal body weight and type 2 diabetes. Obesity, 2022, 30, 1079-1090.                                                                                                                                                                           | 3.0 | 7         |
| 276 | Percutaneous Closure of Postinfarction Ventricular Septal Defect: Cardiac Magnetic<br>Resonance-Guided Case Selection and Postprocedure Evaluation. Canadian Journal of Cardiology, 2011,<br>27, 869.e3-869.e5.                                                                                                         | 1.7 | 6         |
| 277 | Accelerated, high spatial resolution cardiovascular magnetic resonance myocardial perfusion imaging. Journal of Nuclear Cardiology, 2011, 18, 952-958.                                                                                                                                                                  | 2.1 | 6         |
| 278 | Cardiovascular MR Manual. , 2011, , .                                                                                                                                                                                                                                                                                   |     | 6         |
| 279 | Comparison of ESC and NICE guidelines for patients with suspected coronary artery disease:<br>evaluation of the pre-test probability risk scores in clinical practice. Clinical Medicine, 2015, 15,<br>234-238.                                                                                                         | 1.9 | 6         |
| 280 | Cardiovascular magnetic resonance assessment of 1st generation CoreValve and 2nd generation Lotus valves. Journal of Interventional Cardiology, 2018, 31, 391-399.                                                                                                                                                      | 1.2 | 6         |
| 281 | Deleterious Effects of Cold Air Inhalation on Coronary Physiological Indices in Patients With<br>Obstructive Coronary Artery Disease. Journal of the American Heart Association, 2018, 7, e008837.                                                                                                                      | 3.7 | 6         |
| 282 | Silent cerebral infarction and cognitive function following TAVI: an observational two-centre UK comparison of the first-generation CoreValve and second-generation Lotus valve. BMJ Open, 2019, 9, e022329.                                                                                                            | 1.9 | 6         |
| 283 | Exercise cardiovascular magnetic resonance: feasibility and development of biventricular function<br>and great vessel flow assessment, during continuous exercise accelerated by Compressed SENSE:<br>preliminary results in healthy volunteers. International Journal of Cardiovascular Imaging, 2021, 37,<br>685-698. | 1.5 | 6         |
| 284 | Influence of the arterial input sampling location on the diagnostic accuracy of cardiovascular magnetic resonance stressÂmyocardial perfusion quantification. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 35.                                                                                               | 3.3 | 6         |
| 285 | Fourâ€Dimensional Flow Magnetic Resonance Imaging in the Assessment of Blood Flow in the Heart and<br>Great Vessels: A Systematic Review. Journal of Magnetic Resonance Imaging, 2021, , .                                                                                                                              | 3.4 | 6         |
| 286 | Are We There Yet?. JACC: Cardiovascular Imaging, 2021, 14, 1755-1757.                                                                                                                                                                                                                                                   | 5.3 | 6         |
| 287 | Computed tomography coronary angiography: Diagnostic yield and downstream testing. Clinical<br>Medicine, 2020, 20, 81-85.                                                                                                                                                                                               | 1.9 | 6         |
| 288 | Cost-effectiveness in diagnosis of stable angina patients: a decision-analytical modelling approach.<br>Open Heart, 2022, 9, e001700.                                                                                                                                                                                   | 2.3 | 6         |

| #   | ARTICLE                                                                                                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Non-Invasive Imaging in Coronary Syndromes: Recommendations of The European Association of<br>Cardiovascular Imaging and the American Society of Echocardiography, in Collaboration with The<br>American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and<br>Society for Cardiovascular Magnetic Resonance. Journal of the American Society of | 2.8  | 6         |
| 290 | Characterization of Acute Myocardial Infarction by Magnetic Resonance Imaging. JACC:<br>Cardiovascular Imaging, 2009, 2, 1141-1143.                                                                                                                                                                                                                                             | 5.3  | 5         |
| 291 | CMR versus SPECT for diagnosis of coronary heart disease – Authors' reply. Lancet, The, 2012, 379, 2147-2148.                                                                                                                                                                                                                                                                   | 13.7 | 5         |
| 292 | Associated factors for a false negative cardiovascular magnetic resonance perfusion study: a CE-MARC substudy. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P214.                                                                                                                                                                                                    | 3.3  | 5         |
| 293 | Current international guidelines for the investigation of patients with suspected coronary artery disease. European Heart Journal Cardiovascular Imaging, 2014, 15, 1422-1424.                                                                                                                                                                                                  | 1.2  | 5         |
| 294 | The year in cardiology 2017: imaging. European Heart Journal, 2018, 39, 275-285.                                                                                                                                                                                                                                                                                                | 2.2  | 5         |
| 295 | Cardiorresonancia para la estratificación pronóstica del infarto de miocardio. Revista Espanola De<br>Cardiologia, 2019, 72, 115-119.                                                                                                                                                                                                                                           | 1.2  | 5         |
| 296 | Feasibility and reproducibility of a cardiovascular magnetic resonance free-breathing, multi-shot, navigated image acquisition technique for ventricular volume quantification during continuous exercise. Quantitative Imaging in Medicine and Surgery, 2020, 10, 1837-1851.                                                                                                   | 2.0  | 5         |
| 297 | Feasibility and validation of trans-valvular flow derived by four-dimensional flow cardiovascular<br>magnetic resonance imaging in pacemaker recipients. Magnetic Resonance Imaging, 2020, 74, 46-55.                                                                                                                                                                           | 1.8  | 5         |
| 298 | Feasibility and validation of trans-valvular flow derived by four-dimensional flow cardiovascular magnetic resonance imaging in patients with atrial fibrillation. Wellcome Open Research, 2021, 6, 73.                                                                                                                                                                         | 1.8  | 5         |
| 299 | Clinical Application of Dynamic Contrast Enhanced Perfusion Imaging by Cardiovascular Magnetic Resonance. Frontiers in Cardiovascular Medicine, 2021, 8, 768563.                                                                                                                                                                                                                | 2.4  | 5         |
| 300 | Mitral regurgitation quantified by CMR 4D-flow is associated with microvascular obstruction post reperfused ST-segment elevation myocardial infarction. BMC Research Notes, 2022, 15, 181.                                                                                                                                                                                      | 1.4  | 5         |
| 301 | Pathophysiology of LV Remodeling Following STEMI. JACC: Cardiovascular Imaging, 2023, 16, 159-171.                                                                                                                                                                                                                                                                              | 5.3  | 5         |
| 302 | Delayed enhancement imaging: Standardised segmental assessment of myocardial viability in patients with ST-elevation myocardial infarction. European Journal of Radiology, 2008, 66, 42-47.                                                                                                                                                                                     | 2.6  | 4         |
| 303 | CMR for the Diagnosis of Right Heart Disease. JACC: Cardiovascular Imaging, 2012, 5, 227-229.                                                                                                                                                                                                                                                                                   | 5.3  | 4         |
| 304 | The year 2012 in the European Heart Journal - Cardiovascular Imaging. Part II. European Heart Journal<br>Cardiovascular Imaging, 2013, 14, 613-617.                                                                                                                                                                                                                             | 1.2  | 4         |
| 305 | Established and emerging cardiovascular magnetic resonance techniques for prognostication and guiding therapy in heart failure. Expert Review of Cardiovascular Therapy, 2014, 12, 45-55.                                                                                                                                                                                       | 1.5  | 4         |
| 306 | Age-gender normal values of native and post-contrast myocardial T1 relaxation times (lambda) on 1.5T<br>and 3T using MOLLI: a multicenter, single vendor cardiovascular magnetic resonance study. Journal of<br>Cardiovascular Magnetic Resonance, 2014, 16, P23.                                                                                                               | 3.3  | 4         |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Multiparametric relaxometry by cardiac magnetic resonance imaging in Takotsubo cardiomyopathy:.<br>European Heart Journal Cardiovascular Imaging, 2015, 16, 1174-1174.                                                                                        | 1.2 | 4         |
| 308 | Risk stratification in acute myocardial infarction with multiparametric cardiac magnetic resonance imaging: getting to the core of the matter. European Heart Journal, 2016, 37, 1060-1062.                                                                   | 2.2 | 4         |
| 309 | Carotid artery volumetric measures associate with clinical ten-year cardiovascular (CV) risk scores<br>and individual traditional CV risk factors in rheumatoid arthritis; a carotid-MRI feasibility study.<br>Arthritis Research and Therapy, 2018, 20, 266. | 3.5 | 4         |
| 310 | Abnormal electrophysiological testing associates with future incidental significant arrhythmia in scleroderma. Rheumatology, 2020, 59, 899-900.                                                                                                               | 1.9 | 4         |
| 311 | 2D high resolution vs. 3D whole heart myocardial perfusion cardiovascular magnetic resonance.<br>European Heart Journal Cardiovascular Imaging, 2022, 23, 811-819.                                                                                            | 1.2 | 4         |
| 312 | Going with the flow: how reproducible are cardiac magnetic resonance measurements of myocardial perfusion?. Journal of Thoracic Disease, 2013, 5, 371-2.                                                                                                      | 1.4 | 4         |
| 313 | Prospective Longitudinal Characterization of the Relationship between Diabetes and Cardiac Structural and Functional Changes. Cardiology Research and Practice, 2022, 2022, 1-12.                                                                             | 1.1 | 4         |
| 314 | Left ventricular four-dimensional blood flow distribution, energetics, and vorticity in chronic<br>myocardial infarction patients with/without left ventricular thrombus. European Journal of<br>Radiology, 2022, 150, 110233.                                | 2.6 | 4         |
| 315 | Coexistent Diabetes Is Associated With the Presence of Adverse Phenotypic Features in Patients With<br>Hypertrophic Cardiomyopathy. Diabetes Care, 0, , .                                                                                                     | 8.6 | 4         |
| 316 | Right Ventricular Edema Complicating Acute Inferior Myocardial Infarction as Demonstrated by T 2<br>-Weighted Cardiovascular Magnetic Resonance. Circulation: Cardiovascular Imaging, 2009, 2, e28-9.                                                         | 2.6 | 3         |
| 317 | Detection of triple vessel coronary artery disease by visual and quantitative first pass CMR<br>myocardial perfusion imaging in the CE-MARC study. Journal of Cardiovascular Magnetic Resonance,<br>2011, 13, .                                               | 3.3 | 3         |
| 318 | The NICE guidelines on the assessment of chest pain. Journal of the Royal Society of Medicine, 2012, 105, 192-194.                                                                                                                                            | 2.0 | 3         |
| 319 | Understanding LV Remodeling Following Myocardial Infarction. JACC: Cardiovascular Imaging, 2012, 5, 894-896.                                                                                                                                                  | 5.3 | 3         |
| 320 | The ischaemic and scar burden measured by cardiac magnetic resonance imaging in patients with<br>ischaemic coronary heart disease from the CE-MARC study. Journal of Cardiovascular Magnetic<br>Resonance, 2013, 15, 0105.                                    | 3.3 | 3         |
| 321 | Fractional flow reserve is a useful reference standard for myocardial perfusion studies with limitations: reply. European Heart Journal Cardiovascular Imaging, 2014, 15, 474-475.                                                                            | 1.2 | 3         |
| 322 | CardioPulse Articles. European Heart Journal, 2014, 35, 1161-1166.                                                                                                                                                                                            | 2.2 | 3         |
| 323 | Mitral annular plane systolic excursion and intra-myocardial haemorrhage in acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P163.                                                                                        | 3.3 | 3         |
| 324 | Myocardial extracellular volume estimation by CMR predicts functional recovery following acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q63.                                                                            | 3.3 | 3         |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Criteria for recommendation and expert consensus papers: from the European Association of<br>Cardiovascular Imaging Scientific Documents Committee. European Heart Journal Cardiovascular<br>Imaging, 2016, 17, 1098-1100.                               | 1.2 | 3         |
| 326 | Emerging imaging techniques after cardiac transplantation. Journal of Heart and Lung<br>Transplantation, 2016, 35, 1399-1411.                                                                                                                            | 0.6 | 3         |
| 327 | New Cardiac Magnetic Resonance Reference Ranges for Right Ventricular Volumes and Systolic<br>Function. Circulation: Cardiovascular Imaging, 2016, 9, e004589.                                                                                           | 2.6 | 3         |
| 328 | Patient-specific coronary blood supply territories for quantitative perfusion analysis. Computer<br>Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6, 137-154.                                                     | 1.9 | 3         |
| 329 | Detrimental Immediate- and Medium-Term Clinical Effects of Right Ventricular Pacing in Patients With<br>Myocardial Fibrosis. Circulation: Cardiovascular Imaging, 2021, 14, e012256.                                                                     | 2.6 | 3         |
| 330 | Longitudinal Changes in Left Ventricular Blood Flow Kinetic Energy After Myocardial Infarction:<br>Predictive Relevance for Cardiac Remodeling. Journal of Magnetic Resonance Imaging, 2022, 56, 768-778.                                                | 3.4 | 3         |
| 331 | The year 2012 in the European Heart Journal - Cardiovascular Imaging: Part I. European Heart Journal<br>Cardiovascular Imaging, 2013, 14, 509-514.                                                                                                       | 1.2 | 2         |
| 332 | The year 2013 in the European Heart Journal - Cardiovascular Imaging: Part II. European Heart Journal<br>Cardiovascular Imaging, 2014, 15, 837-841.                                                                                                      | 1.2 | 2         |
| 333 | The year 2013 in the European Heart Journal - Cardiovascular Imaging. Part I. European Heart Journal<br>Cardiovascular Imaging, 2014, 15, 730-735.                                                                                                       | 1.2 | 2         |
| 334 | Relation of circumferential and longitudinal strain to other independent prognostic imaging markers<br>in first time ST-elevation myocardial infarction. International Journal of Cardiology, 2015, 186, 202-203.                                        | 1.7 | 2         |
| 335 | Right ventricular function following Surgical Aortic Valve Replacement (SAVR). Journal of<br>Cardiovascular Magnetic Resonance, 2015, 17, P177.                                                                                                          | 3.3 | 2         |
| 336 | Abnormal left ventricular geometry is prevalent in asymptomatic patients with established<br>rheumatoid arthritis compared with those with early disease and healthy controls. Journal of<br>Cardiovascular Magnetic Resonance, 2015, 17, .              | 3.3 | 2         |
| 337 | Gender influences left ventricular remodelling in the setting of aortic stenosis but does not appear<br>to impact on reverse remodelling following transcatheter aortic valve implantation. Journal of<br>Cardiovascular Magnetic Resonance, 2015, 17, . | 3.3 | 2         |
| 338 | Dilatation of the thoracic aorta and increased arterial stiffness is common in patients with giant cell<br>arteritis - preliminary findings from a cardiac magnetic resonance study. Journal of Cardiovascular<br>Magnetic Resonance, 2015, 17, P407.    | 3.3 | 2         |
| 339 | T2-mapping and T2*-mapping for detection of intramyocardial haemorrhage: a head-to-head comparison with T2-weighted imaging. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P80.                                                                | 3.3 | 2         |
| 340 | PROMISE: where now for CT coronary angiography. European Heart Journal Cardiovascular Imaging, 2015, 16, 1187-1188.                                                                                                                                      | 1.2 | 2         |
| 341 | Heart failure in Diabetic patients. European Heart Journal, 2018, 39, 1755-1757.                                                                                                                                                                         | 2.2 | 2         |
| 342 | A 30-Year-Old Man With Primary CardiacÂAngiosarcoma. JACC: Case Reports, 2021, 3, 944-949.                                                                                                                                                               | 0.6 | 2         |

| #   | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Detection of Intramyocardial Iron in Patients Following ST â€Elevation Myocardial Infarction Using Cardiac Diffusion Tensor Imaging. Journal of Magnetic Resonance Imaging, 2022, , .                                                                             | 3.4  | 2         |
| 344 | Acute Myocarditis Mimicking Hypertrophic Cardiomyopathy in MarfanÂSyndrome and Morphologically<br>Abnormal Mitral Valve. JACC: Case Reports, 2022, 4, 105-110.                                                                                                    | 0.6  | 2         |
| 345 | Developments in cardiac ultrasound. British Journal of Hospital Medicine, 2000, 61, 240-245.                                                                                                                                                                      | 0.2  | 1         |
| 346 | In vivo comparison of DENSE and CSPAMM for cardiac motion analysis. Journal of Cardiovascular<br>Magnetic Resonance, 2009, 11, .                                                                                                                                  | 3.3  | 1         |
| 347 | Reproducibility of First Pass Perfusion CMR at rest and during hyperaemia for estimation of myocardial perfusion. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .                                                                                       | 3.3  | 1         |
| 348 | Late Dynamic Right Ventricular Outflow Obstruction After the Ross Procedure for Bicuspid Aortic Valve Disease. Circulation, 2012, 125, e1043-6.                                                                                                                   | 1.6  | 1         |
| 349 | Systolic versus diastolic myocardial blood flow in patients with suspected coronary artery disease - a<br>cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .                                                      | 3.3  | 1         |
| 350 | Visual and quantitative perfusion analysis in left main stem disease: a CE-MARC substudy. Journal of<br>Cardiovascular Magnetic Resonance, 2013, 15, P195.                                                                                                        | 3.3  | 1         |
| 351 | Aâ€Unravelling the Mechanisms of Exercise Induced Ischaemia, its Optimal Assessment, and Alleviation with Nitroglycerine. Heart, 2014, 100, A124.2-A125.                                                                                                          | 2.9  | 1         |
| 352 | Registration of coronary MRA to DCE-MRI myocardial perfusion series improves diagnostic accuracy<br>through the computation of patient-specific coronary supply territories: a CE-MARC sub-study.<br>Journal of Cardiovascular Magnetic Resonance, 2014, 16, O25. | 3.3  | 1         |
| 353 | Patient adaptive maximal resolution magnetic resonance myocardial stress perfusion imaging. Journal of Magnetic Resonance Imaging, 2015, 42, 946-953.                                                                                                             | 3.4  | 1         |
| 354 | The prognostic value of cardiovascular magnetic resonance in aborted sudden cardiac death. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .                                                                                                              | 3.3  | 1         |
| 355 | Is signal intensity of late gadolinium enhancement a substitute for extracellular volume mapping in<br>acute myocardial infarction?. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P156.                                                                | 3.3  | 1         |
| 356 | CMR assessment of longitudinal left ventricular function following transcatheter aortic valve<br>implantation (TAVI) for severe aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2015, 17,<br>P180.                                                 | 3.3  | 1         |
| 357 | Important role of myocardial tissue characterization by cardiac MRI in diagnosing Takotsubo<br>syndrome. Nature Reviews Cardiology, 2015, 12, 669-669.                                                                                                            | 13.7 | 1         |
| 358 | Use of novel intracoronary technology to investigate the effect of cold air inhalation during exercise on coronary microvascular resistance and blood flow in coronary artery disease: a cross-sectional study. Lancet, The, 2016, 387, S106.                     | 13.7 | 1         |
| 359 | EuroEcho-Imaging 2015: highlights. European Heart Journal Cardiovascular Imaging, 2016, 17, 596-603.                                                                                                                                                              | 1.2  | 1         |
| 360 | Investigation into diagnostic accuracy of common strategies for automated perfusion motion correction. Journal of Medical Imaging, 2016, 3, 024002.                                                                                                               | 1.5  | 1         |

| #   | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Native T1 Mapping. Circulation: Cardiovascular Imaging, 2017, 10, .                                                                                                                                                                                                         | 2.6 | 1         |
| 362 | Effects of Vildagliptin on Ventricular Function in Patients With TypeÂ2ÂDiabetes Mellitus and Heart<br>Failure. JACC: Heart Failure, 2018, 6, 443-444.                                                                                                                      | 4.1 | 1         |
| 363 | Role of CMR in Prognostic Stratification in Myocardial Infarction. Revista Espanola De Cardiologia<br>(English Ed ), 2019, 72, 115-119.                                                                                                                                     | 0.6 | 1         |
| 364 | Rationale and design of the randomised controlled cross-over trial: Cardiovascular effects of<br>empaglifozin in diabetes mellitus. Diabetes and Vascular Disease Research, 2021, 18, 147916412110215.                                                                      | 2.0 | 1         |
| 365 | Reproducibility of left ventricular blood flow kinetic energy measured by four-dimensional flow CMR. BMC Research Notes, 2021, 14, 289.                                                                                                                                     | 1.4 | 1         |
| 366 | The impact of dark-blood versus conventional bright-blood late gadolinium enhancement on the myocardial ischemic burden. European Journal of Radiology, 2021, 144, 109947.                                                                                                  | 2.6 | 1         |
| 367 | Letter to the Editor. Journal of Cardiovascular Magnetic Resonance, 2005, 7, 537-538.                                                                                                                                                                                       | 3.3 | 0         |
| 368 | Assessment of coronary artery disease with a combined magnetic resonance examination. Current<br>Cardiovascular Imaging Reports, 2009, 2, 157-163.                                                                                                                          | 0.6 | 0         |
| 369 | Noninvasive Assessment of Coronary Artery Bypass Graft Disease. JACC: Cardiovascular Imaging, 2009, 2, 446-448.                                                                                                                                                             | 5.3 | 0         |
| 370 | First-pass myocardial perfusion assessment using eight-fold accelerated k-t BLAST stress DCE-MRI with rapid parametric mapping. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .                                                                                   | 3.3 | 0         |
| 371 | k-t SENSE-accelerated myocardial perfusion MR imaging at 3.0 Tesla – comparison with pressure wire measurement of fractional flow reserve. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .                                                                        | 3.3 | 0         |
| 372 | Endocardial to epicardial perfusion ratios at rest and stress determined by perfusion-CMR. Journal of<br>Cardiovascular Magnetic Resonance, 2009, 11, .                                                                                                                     | 3.3 | 0         |
| 373 | Assessment of change in aortic distensibility in patients with left ventricular hypertrophy (LVH),<br>before and after therapy, using Cardiac Magnetic Resonance (CMR) imaging. Journal of Cardiovascular<br>Magnetic Resonance, 2009, 11, .                                | 3.3 | 0         |
| 374 | Detection of haemodynamically significant coronary stenoses with k-t SENSE-accelerated Myocardial<br>Perfusion MR Imaging at 3.0 Tesla - a comparison with fractional flow reserve. Journal of<br>Cardiovascular Magnetic Resonance, 2010, 12, .                            | 3.3 | 0         |
| 375 | Effect of improving spatial or temporal resolution with k-t SENSE acceleration in first pass CMR<br>myocardial perfusion imaging. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .                                                                                 | 3.3 | 0         |
| 376 | Highly accelerated high spatial resolution myocardial perfusion imaging. Journal of Cardiovascular<br>Magnetic Resonance, 2010, 12, .                                                                                                                                       | 3.3 | 0         |
| 377 | A comparison of high-resolution and standard cardiovascular magnetic resonance myocardial<br>perfusion imaging for the detection of myocardial ischaemia. Journal of Cardiovascular Magnetic<br>Resonance, 2011, 13, .                                                      | 3.3 | 0         |
| 378 | Validation of dynamic three-dimensional whole heart magnetic resonance myocardial perfusion<br>imaging at 3.0 Tesla against fractional flow reserve for the detection of flow-limiting coronary heart<br>disease. Journal of Cardiovascular Magnetic Resonance, 2012, 14, . | 3.3 | 0         |

| #   | Article                                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | First pass vasodilator-stress myocardial perfusion CMR in mice on a whole-body 3Tesla scanner:<br>validation against microspheres. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .                                                                                                                                      | 3.3 | 0         |
| 380 | Response to Letter Regarding Article "Comparison of Cardiovascular Magnetic Resonance and<br>Single-Photon Emission Computed Tomography in Women With Suspected Coronary Artery Disease<br>From the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC)<br>Trial― Circulation, 2014, 130, e340. | 1.6 | 0         |
| 381 | Diagnostic accuracy of the core components of a multi-parametric cardiovascular magnetic<br>resonance imaging protocol: a CE-MARC sub-study. Journal of Cardiovascular Magnetic Resonance,<br>2014, 16, O19.                                                                                                                      | 3.3 | 0         |
| 382 | Cardiovascular magnetic resonance assessment of ventricular morphology to investigate the<br>mechanisms of heart failure associated with type 2 diabetes. Journal of Cardiovascular Magnetic<br>Resonance, 2015, 17, 082.                                                                                                         | 3.3 | 0         |
| 383 | Clinical validation of susceptibility-weighted cardiovascular magnetic resonance in comparison to T2<br>and T2* imaging for detection of intramyocardial hemorrhage following acute myocardial infarction.<br>Journal of Cardiovascular Magnetic Resonance, 2015, 17, P117.                                                       | 3.3 | 0         |
| 384 | Left atrial remodelling following transcatheter aortic valve implantation (TAVI) and surgical aortic valve replacement (SAVR). Journal of Cardiovascular Magnetic Resonance, 2015, 17, P182.                                                                                                                                      | 3.3 | 0         |
| 385 | Assessment of interventricular systolic relationship and infarct location in acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .                                                                                                                                                               | 3.3 | 0         |
| 386 | Split dose versus single bolus gadolinium administration in ecv calculation at 3 tesla cmr. Journal of<br>Cardiovascular Magnetic Resonance, 2015, 17, P257.                                                                                                                                                                      | 3.3 | 0         |
| 387 | Newly diagnosed, treatment-naive patients with rheumatoid arthritis have early abnormalities of vascular and myocardial function. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P285.                                                                                                                                   | 3.3 | 0         |
| 388 | Left ventricular mass regression may occur very early following transcatheter aortic valve<br>implantation for severe aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P341.                                                                                                                              | 3.3 | 0         |
| 389 | Comparison of non-linearity correction methods for quantitative myocardial perfusion MRI. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .                                                                                                                                                                               | 3.3 | 0         |
| 390 | A comparison of dual-bolus and dual-sequence quantitative myocardial perfusion techniques. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P50.                                                                                                                                                                           | 3.3 | 0         |
| 391 | Quantitative myocardial perfusion performs as well as visual analysis in diagnosing myocardial ischaemia: a CE-MARC sub-study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P93.                                                                                                                                       | 3.3 | 0         |
| 392 | Coronary sinus flow measurement—a useful addition to first pass myocardial perfusion<br>cardiovascular magnetic resonance?. European Heart Journal Cardiovascular Imaging, 2017, 18, 860-861.                                                                                                                                     | 1.2 | 0         |
| 393 | Multimodality imaging: Bird's eye view from The European Society of Cardiology Congress 2016.<br>Journal of Nuclear Cardiology, 2017, 24, 180-187.                                                                                                                                                                                | 2.1 | 0         |
| 394 | O15 Implantable loop recorder in systemic sclerosis over three years confirms incidental significant<br>arrhythmia and suggests CMR and cardiac biomarker association. Rheumatology, 2018, 57, .                                                                                                                                  | 1.9 | 0         |
| 395 | 17â€Single breath-hold, 3d mdixon pulse sequence for late gadolinium enhancement imaging of ischaemic<br>scar: a feasibility study. , 2018, , .                                                                                                                                                                                   |     | 0         |
| 396 | Automated Pixelwise Perfusion MappingÂby CMR. JACC: Cardiovascular Imaging, 2018, 11, 708-710.                                                                                                                                                                                                                                    | 5.3 | 0         |

| #   | Article                                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | Pulmonary arteriovenous malformations and embolic myocardial infarction identified with<br>cardiovascular magnetic resonance. European Heart Journal Cardiovascular Imaging, 2019, 20,<br>1430-1431.                                                                                                                          | 1.2 | 0         |
| 398 | The Additive Value of Cardiovascular Magnetic Resonance Imaging in Hypertensive Heart Disease.<br>Updates in Hypertension and Cardiovascular Protection, 2019, , 185-197.                                                                                                                                                     | 0.1 | 0         |
| 399 | SAT0227â€MYOCARDIAL FIBROSIS IS ASSOCIATED WITH ANCA STATUS, ORGAN INVOLVEMENT AND DISEASE SEVERITY IN PATIENTSWITH GRANULOMATOSIS WITH POLYANGIITIS. , 2019, , .                                                                                                                                                             |     | 0         |
| 400 | 107â€Nice 2016 stable chest pain guidelines: improved yield of severe coronary artery disease at invasive coronary angiography. , 2019, , .                                                                                                                                                                                   |     | 0         |
| 401 | Response to: â€ <sup>-</sup> Correspondence on â€ <sup>-</sup> Cardiovascular effects of biological versus conventional synthetic<br>disease-modifying antirheumatic drug therapy in treatment-naive, early rheumatoid arthritis'' by<br>Georgiadis et al. Annals of the Rheumatic Diseases, 2021, , annrheumdis-2021-219926. | 0.9 | 0         |
| 402 | Using cardiovascular magnetic resonance to define mechanisms of comorbidity and to measure the effect of biological therapy: the CADERA observational study. Efficacy and Mechanism Evaluation, 2021, 8, 1-42.                                                                                                                | 0.7 | 0         |
| 403 | Accuracy of dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease in patients with reduced ejection fraction. Imaging, 2021, 13, 61-68.                                                                                                                                 | 0.3 | 0         |
| 404 | Perfusion Stress Magnetic Resonance. , 2010, , 205-222.                                                                                                                                                                                                                                                                       |     | 0         |
| 405 | Comprehensive Cardiovascular Magnetic Resonance in Coronary Artery Disease. , 2010, , 158-169.                                                                                                                                                                                                                                |     | 0         |
| 406 | Quantitative Techniques in Cardiovascular MRI. Series in Medical Physics and Biomedical Engineering, 2013, , 235-268.                                                                                                                                                                                                         | 0.1 | 0         |
| 407 | Stress Testing. , 2015, , 193-209.                                                                                                                                                                                                                                                                                            |     | 0         |
| 408 | 51â€Assessment of cardiovascular response during continuous exercise using multi-shot, navigated, steady-state free precession cardiovascular magnetic resonance imaging: a pilot study of healthy controls. , 2018, , .                                                                                                      |     | 0         |
| 409 | Myocardial Perfusion Cardiovascular Magnetic Resonance. , 2019, , 51-65.e2.                                                                                                                                                                                                                                                   |     | 0         |
| 410 | 14â€The presence of diabetes as a comorbidity adversely affects the phenotypic expression of hypertrophic cardiomyopathy. , 2021, , .                                                                                                                                                                                         |     | 0         |
| 411 | Applications of Quantitative Perfusion and Permeability in the Body. Advances in Magnetic Resonance<br>Technology and Applications, 2020, , 427-454.                                                                                                                                                                          | 0.1 | 0         |
| 412 | An unusual case of apical myocarditis: a case report. European Heart Journal - Case Reports, 2020, 4,<br>1-5.                                                                                                                                                                                                                 | 0.6 | 0         |
| 413 | Cardiac magnetic resonance perfusion abnormality due to anaemia. European Heart Journal<br>Cardiovascular Imaging, 2021, , .                                                                                                                                                                                                  | 1.2 | 0         |
| 414 | Development and delivery of a high-quality European Cardiovascular Magnetic Resonance<br>Examination. European Heart Journal, 2014, 35, 1628-9.                                                                                                                                                                               | 2.2 | 0         |

| #   | Article                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | CardioPulse: Year in cardiology 2015: the future of cardiovascular magnetic resonance imaging.<br>European Heart Journal, 2016, 37, 663-4. | 2.2 | Ο         |
| 416 | Cardiovascular magnetic resonance assessment of left atrial size and function in endurance athletes.<br>Future Cardiology, 0, , .          | 1.2 | 0         |