Yan Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2872019/publications.pdf

Version: 2024-02-01

623734 713466 22 695 14 21 citations h-index g-index papers 22 22 22 1024 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Effect of the Ancillary Ligand on the Performance of Heteroleptic Cu(I) Diimine Complexes as Dyes in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 1460-1470.	5.1	10
2	Exploring Lewis-Base Effects to Improve the Efficiency of [Co(bpy) ₃] ^{2+/3+} -Mediated Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 5705-5711.	5.1	3
3	Light-induced electrolyte improvement in cobalt tris(bipyridine)-mediated dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 19495-19505.	10.3	14
4	Mechanistic Insights into Solid-State p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2019, 123, 26151-26160.	3.1	3
5	Energyâ€Loss Reduction as a Strategy to Improve the Efficiency of Dyeâ€Sensitized Solar Cells. Solar Rrl, 2019, 3, 1900253.	5.8	14
6	Molecular Engineering of Dâ^'π–A Type of Blue-Colored Dyes for Highly Efficient Solid-State Dye-Sensitized Solar Cells through Co-Sensitization. ACS Applied Materials & Interfaces, 2018, 10, 35946-35952.	8.0	8
7	Efficient Dye-Sensitized Solar Cells with Voltages Exceeding 1 V through Exploring Tris(4-alkoxyphenyl)amine Mediators in Combination with the Tris(bipyridine) Cobalt Redox System. ACS Energy Letters, 2018, 3, 1929-1937.	17.4	22
8	Carrier Dynamics of Dye Sensitized-TiO ₂ in Contact with Different Cobalt Complexes in the Presence of Tri(p-anisyl)amine Intermediates. Journal of Physical Chemistry C, 2018, 122, 14345-14354.	3.1	3
9	2-(4-Butoxyphenyl)- <i>N</i> -hydroxyacetamide: An Efficient Preadsorber for Dye-Sensitized Solar Cells. ACS Omega, 2017, 2, 1820-1825.	3.5	14
10	Investigation of Triphenylamine (TPA)-Based Metal Complexes and Their Application in Perovskite Solar Cells. ACS Omega, 2017, 2, 9231-9240.	3.5	19
11	Efficient Blueâ€Colored Solidâ€State Dyeâ€Sensitized Solar Cells: Enhanced Charge Collection by Using an in Situ Photoelectrochemically Generated Conducting Polymer Hole Conductor. ChemPhysChem, 2016, 17, 1441-1445.	2.1	21
12	A small electron donor in cobalt complex electrolyte significantly improves efficiency in dye-sensitized solar cells. Nature Communications, $2016, 7, 13934$.	12.8	81
13	Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 9595-9603.	3.1	140
14	Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization. ACS Applied Materials & Interfaces, 2016, 8, 32797-32804.	8.0	67
15	Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 15868-15875.	2.8	58
16	A key discovery at the TiO ₂ /dye/electrolyte interface: slow local charge compensation and a reversible electric field. Physical Chemistry Chemical Physics, 2015, 17, 16744-16751.	2.8	33
17	Electrolytes Based on TEMPO–Co Tandem Redox Systems Outperform Single Redox Systems in Dyeâ€sensitized Solar Cells. ChemSusChem, 2015, 8, 264-268.	6.8	29
18	Two Redox Couples are Better Than One: Improved Current and Fill Factor from Cobaltâ€Based Electrolytes in Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301273.	19.5	17

#	Article	IF	CITATION
19	Triphenylamine Groups Improve Blocking Behavior of Phenoxazine Dyes in Cobaltâ€Electrolyteâ€Based Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2014, 15, 3476-3483.	2.1	17
20	Poly(3,4-ethylenedioxythiophene) Hole-Transporting Material Generated by Photoelectrochemical Polymerization in Aqueous and Organic Medium for All-Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16591-16601.	3.1	48
21	Influence of the Annealing Atmosphere on the Performance of ZnO Nanowire Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 16349-16356.	3.1	74
22	Fine-tuning of redox intermediates for highly efficient dye-sensitized solar cells. , 0, , .		0