
Marius K Lemberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2871995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of cellular iron deficiency in controlling iron export. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129829.	2.4	7
2	Insights into the catalytic properties of the mitochondrial rhomboid protease PARL. Journal of Biological Chemistry, 2021, 296, 100383.	3.4	16
3	Interleukinâ€11 (ILâ€11) receptor cleavage by the rhomboid protease RHBDL2 induces ILâ€11 transâ€signaling. FASEB Journal, 2021, 35, e21380.	0.5	20
4	Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms. Molecular Cell, 2021, 81, 2507-2519.	9.7	69
5	Transmembrane dislocases: a second chance for protein targeting. Trends in Cell Biology, 2021, 31, 898-911.	7.9	13
6	Signal Peptide Peptidase-Type Proteases: Versatile Regulators with Functions Ranging from Limited Proteolysis to Protein Degradation. Journal of Molecular Biology, 2020, 432, 5063-5078.	4.2	10
7	Intramembrane protease RHBDL4 cleaves oligosaccharyltransferase subunits to target them for ER-associated degradation. Journal of Cell Science, 2020, 133, .	2.0	22
8	CRISPR-Cas12a–assisted PCR tagging of mammalian genes. Journal of Cell Biology, 2020, 219, .	5.2	42
9	Derlins with scissors: primordial <scp>ERAD</scp> in bacteria. EMBO Journal, 2020, 39, e105012.	7.8	5
10	Intramembrane proteolysis at a glance: from signalling to protein degradation. Journal of Cell Science, 2019, 132, .	2.0	47
11	The Metastable XBP1u Transmembrane Domain Defines Determinants for Intramembrane Proteolysis by Signal Peptide Peptidase. Cell Reports, 2019, 26, 3087-3099.e11.	6.4	27
12	The intramembrane protease <scp>SPPL</scp> 2c promotes male germ cell development by cleavingÂphospholamban. EMBO Reports, 2019, 20, .	4.5	27
13	The intramembrane protease SPP impacts morphology of the endoplasmic reticulum by triggering degradation of morphogenic proteins. Journal of Biological Chemistry, 2019, 294, 2786-5585.	3.4	19
14	Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. ELife, 2019, 8, .	6.0	68
15	Membrane Protein Dislocation by the Rhomboid Pseudoprotease Dfm1: No Pore Needed?. Molecular Cell, 2018, 69, 161-162.	9.7	7
16	Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes. Diabetes, 2018, 67, 687-696.	0.6	35
17	Proteolytic ectodomain shedding of membrane proteins in mammals—hardware, concepts, and recent developments. EMBO Journal, 2018, 37, .	7.8	211
18	Genome-wide C-SWAT library for high-throughput yeast genome tagging. Nature Methods, 2018, 15, 598-600.	19.0	57

MARIUS K LEMBERG

#	Article	lF	CITATIONS
19	Probing the Activity of Eukaryotic Rhomboid Proteases In Vitro. Methods in Enzymology, 2017, 584, 99-126.	1.0	1
20	Inactive rhomboid proteins: New mechanisms with implications in health and disease. Seminars in Cell and Developmental Biology, 2016, 60, 29-37.	5.0	29
21	Yeast membrane proteomics using leucine metabolic labelling: Bioinformatic data processing and exemplary application to the ER-intramembrane protease Ypf1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1363-1371.	2.3	4
22	Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGF1±. Scientific Reports, 2016, 6, 27342.	3.3	39
23	Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Molecular Biology of the Cell, 2016, 27, 360-370.	2.1	72
24	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
25	Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy, 2015, 11, 1484-1498.	9.1	81
26	Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends in Biochemical Sciences, 2015, 40, 318-327.	7.5	102
27	Clipping or Extracting: Two Ways to Membrane Protein Degradation. Trends in Cell Biology, 2015, 25, 611-622.	7.9	78
28	The Yeast ER-Intramembrane Protease Ypf1 Refines Nutrient Sensing by Regulating Transporter Abundance. Molecular Cell, 2014, 56, 630-640.	9.7	48
29	Signal peptide peptidase functions in <scp>ERAD</scp> to cleave the unfolded protein response regulator <scp>XBP</scp> 1u. EMBO Journal, 2014, 33, 2492-2506.	7.8	95
30	Sampling the membrane: function of rhomboid-family proteins. Trends in Cell Biology, 2013, 23, 210-217.	7.9	45
31	Emerging role of rhomboid family proteins in mammalian biology and disease. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2840-2848.	2.6	51
32	Human Cytomegalovirus UL40 Signal Peptide Regulates Cell Surface Expression of the NK Cell Ligands HLA-E and gpUL18. Journal of Immunology, 2012, 188, 2794-2804.	0.8	77
33	Ubiquitin-Dependent Intramembrane Rhomboid Protease Promotes ERAD of Membrane Proteins. Molecular Cell, 2012, 47, 558-569.	9.7	163
34	The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. Journal of Neurochemistry, 2011, 117, 856-867.	3.9	313
35	Intramembrane Proteolysis in Regulated Protein Trafficking. Traffic, 2011, 12, 1109-1118.	2.7	42
36	Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Reports, 2011, 12, 421-427.	4.5	103

MARIUS K LEMBERG

#	Article	IF	CITATIONS
37	Cutting Proteins within Lipid Bilayers: Rhomboid Structure and Mechanism. Molecular Cell, 2007, 28, 930-940.	9.7	51
38	Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Research, 2007, 17, 1634-1646.	5.5	207
39	Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO Journal, 2005, 24, 464-472.	7.8	157
40	Consensus Analysis of Signal Peptide Peptidase and Homologous Human Aspartic Proteases Reveals Opposite Topology of Catalytic Domains Compared with Presenilins. Journal of Biological Chemistry, 2004, 279, 50790-50798.	3.4	90
41	On the mechanism of SPP-catalysed intramembrane proteolysis; conformational control of peptide bond hydrolysis in the plane of the membrane. FEBS Letters, 2004, 564, 213-218.	2.8	40
42	Analysis of polypeptides by sodium dodecyl sulfate–polyacrylamide gel electrophoresis alongside in vitro-generated reference peptides. Analytical Biochemistry, 2003, 319, 327-331.	2.4	18
43	Targeting Presenilin-type Aspartic Protease Signal Peptide Peptidase with Î ³ -Secretase Inhibitors. Journal of Biological Chemistry, 2003, 278, 16528-16533.	3.4	114
44	Requirement of the Proteasome for the Trimming of Signal Peptide-derived Epitopes Presented by the Nonclassical Major Histocompatibility Complex Class I Molecule HLA-E. Journal of Biological Chemistry, 2003, 278, 33747-33752.	3.4	54
45	Identification of Signal Peptide Peptidase, a Presenilin-Type Aspartic Protease. Science, 2002, 296, 2215-2218.	12.6	521
46	Requirements for Signal Peptide Peptidase-Catalyzed Intramembrane Proteolysis. Molecular Cell, 2002, 10, 735-744.	9.7	235
47	Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO Journal, 2002, 21, 3980-3988.	7.8	418
48	Intramembrane Proteolysis of Signal Peptides: An Essential Step in the Generation of HLA-E Epitopes. Journal of Immunology, 2001, 167, 6441-6446.	0.8	167
49	Release of Signal Peptide Fragments into the Cytosol Requires Cleavage in the Transmembrane Region by a Protease Activity That Is Specifically Blocked by a Novel Cysteine Protease Inhibitor. Journal of Biological Chemistry, 2000, 275, 30951-30956.	3.4	111