Taissa Vila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287175/publications.pdf Version: 2024-02-01

Γ Λ Ι	C	c /	1	/11	۸

#	Article	IF	CITATIONS
1	Oral Candidiasis: A Disease of Opportunity. Journal of Fungi (Basel, Switzerland), 2020, 6, 15.	3.5	200
2	Targeting <i>Candida albicans</i> filamentation for antifungal drug development. Virulence, 2017, 8, 150-158.	4.4	142
3	The Candida albicans Biofilm Matrix: Composition, Structure and Function. Journal of Fungi (Basel,) Tj ETQq1 1	0.784314	rgBT /Overloo
4	The power of saliva: Antimicrobial and beyond. PLoS Pathogens, 2019, 15, e1008058.	4.7	65
5	Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. Journal of Antimicrobial Chemotherapy, 2013, 68, 113-125.	3.0	64
6	Screening the Pathogen Box for Identification of Candida albicans Biofilm Inhibitors. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	53
7	The Role of Candida albicans Secreted Polysaccharides in Augmenting Streptococcus mutans Adherence and Mixed Biofilm Formation: In vitro and in vivo Studies. Frontiers in Microbiology, 2020, 11, 307.	3.5	49
8	<i>In Vitro</i> Activity of Miltefosine against Candida albicans under Planktonic and Biofilm Growth Conditions and <i>In Vivo</i> Efficacy in a Murine Model of Oral Candidiasis. Antimicrobial Agents and Chemotherapy, 2015, 59, 7611-7620.	3.2	46
9	A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis. Lasers in Medical Science, 2015, 30, 1031-1039.	2.1	45
10	Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells. International Journal of Antimicrobial Agents, 2016, 48, 512-520.	2.5	45
11	Miltefosine Has a Postantifungal Effect and Induces Apoptosis in Cryptococcus Yeasts. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	41
12	Biofilm Formation by Pseudallescheria/Scedosporium Species: A Comparative Study. Frontiers in Microbiology, 2017, 8, 1568.	3.5	40
13	Therapeutic implications of <i>C. albicans-S. aureus</i> mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence, 2021, 12, 835-851.	4.4	37
14	Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms. BMC Complementary and Alternative Medicine, 2015, 15, 68.	3.7	35
15	<i>Candida albicans</i> quorum-sensing molecule farnesol modulates staphyloxanthin production and activates the thiol-based oxidative-stress response in <i>Staphylococcus aureus</i> . Virulence, 2019, 10, 625-642.	4.4	35
16	Functional characterization of the <scp><i>A</i></scp> <i>spergillus nidulans</i> glucosylceramide pathway reveals that LCB Δ8â€desaturation and C9â€methylation are relevant to filamentous growth, lipid raft localization and <i>Ps</i> d1 defensin activity. Molecular Microbiology, 2016, 102, 488-505.	2.5	34
17	Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro. Journal of Medical Microbiology, 2015, 64, 1436-1449.	1.8	29
18	Growth inhibition and ultrastructural alterations induced by Δ24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms. BMC Microbiology, 2009, 9, 74.	3.3	27

TAISSA VILA

#	Article	IF	CITATIONS
19	Convalescent serum therapy for COVID-19:ÂA 19th century remedy for a 21st century disease. PLoS Pathogens, 2020, 16, e1008735.	4.7	23
20	Multifunctional antibacterial dental sealants suppress biofilms derived from children at high risk of caries. Biomaterials Science, 2020, 8, 3472-3484.	5.4	23
21	Antifungal Activity of a Hydroethanolic Extract From Astronium urundeuva Leaves Against Candida albicans and Candida glabrata. Frontiers in Microbiology, 2019, 10, 2642.	3.5	20
22	Evaluation of the Antifungal and Wound-Healing Properties of a Novel Peptide-Based Bioadhesive Hydrogel Formulation. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	19
23	Comparative Evaluations of the Pathogenesis of Candida auris Phenotypes and Candida albicans Using Clinically Relevant Murine Models of Infections. MSphere, 2020, 5, .	2.9	19
24	<i>Candida auris:</i> a fungus with identity crisis. Pathogens and Disease, 2020, 78, .	2.0	18
25	Identification of two potential inhibitors of Sporothrix brasiliensis and Sporothrix schenckii in the Pathogen Box collection. PLoS ONE, 2020, 15, e0240658.	2.5	16
26	Digital Design of a Universal Rat Intraoral Device for Therapeutic Evaluation of a Topical Formulation against <i>Candida</i> -Associated Denture Stomatitis. Infection and Immunity, 2019, 87, .	2.2	15
27	The Role of Hydrophobicity and Surface Receptors at Hyphae of Lyophyllum sp. Strain Karsten in the Interaction with Burkholderia terrae BS001 – Implications for Interactions in Soil. Frontiers in Microbiology, 2016, 7, 1689.	3.5	12
28	Sporothrix spp. Biofilms Impact in the Zoonotic Transmission Route: Feline Claws Associated Biofilms, Itraconazole Tolerance, and Potential Repurposing for Miltefosine. Pathogens, 2022, 11, 206.	2.8	12
29	<i>In Vitro</i> and <i>In Vivo</i> Antifungal Activity of Buparvaquone against <i>Sporothrix brasiliensis</i> . Antimicrobial Agents and Chemotherapy, 2021, 65, e0069921.	3.2	10
30	<i>Candida albicans</i> biofilms: comparative analysis of roomâ€ŧemperature and cryofixation for scanning electron microscopy. Journal of Microscopy, 2017, 267, 409-419.	1.8	9
31	A novel naphthoquinone derivative shows selective antifungal activity against Sporothrix yeasts and biofilms. Brazilian Journal of Microbiology, 2022, 53, 749-758.	2.0	9
32	Long-term antibacterial activity and cytocompatibility of novel low-shrinkage-stress, remineralizing composites. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 886-905.	3.5	7
33	Activity of Metal-Azole Complexes Against Biofilms of Candida albicans and Candida glabrata. Current Pharmaceutical Design, 2020, 26, 1524-1531.	1.9	7
34	New Targets for the Development of Antifungal Agents. , 2021, , 456-467.		3
35	The Global Emergence of the Fungal Pathogen Candida auris. Clinical Infectious Diseases, 2021, 72, 178-179.	5.8	1
36	COVID-19: Fighting a Virus Gone Viral. Frontiers for Young Minds, 0, 8, .	0.8	1

#	Article	IF	CITATIONS
37	Fungal Biofilms. , 2017, , 326-326.		0