Andrew Forge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2871448/publications.pdf

Version: 2024-02-01

57758 53230 7,793 104 44 85 citations h-index g-index papers 111 111 111 6115 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The timing of auditory sensory deficits in Norrie disease has implications for therapeutic intervention. JCI Insight, 2022, 7, .	5.0	6
2	Ultrastructural defects in stereocilia and tectorial membrane in aging mouse and human cochleae. Journal of Neuroscience Research, 2020, 98, 1745-1763.	2.9	18
3	Restoring the balance: regeneration of hair cells in the vestibular system of the inner ear. Current Opinion in Physiology, 2020, 14, 35-40.	1.8	O
4	Localized disorganization of the cochlear inner hair cell synaptic region after noise exposure. Biology Open, 2019, 8, .	1.2	18
5	Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation. Nature Communications, 2018, 9, 4015.	12.8	54
6	Gαi Proteins are Indispensable for Hearing. Cellular Physiology and Biochemistry, 2018, 47, 1509-1532.	1.6	25
7	Regenerating hair cells in vestibular sensory epithelia from humans. ELife, 2018, 7, .	6.0	39
8	A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nature Biotechnology, 2017, 35, 280-284.	17.5	248
9	Defective $Gpsm2/G\hat{l}\pm i3$ signalling disrupts stereocilia development and growth cone actin dynamics in Chudley-McCullough syndrome. Nature Communications, 2017, 8, 14907.	12.8	69
10	Disruption of SorCS2 reveals differences in the regulation of stereociliary bundle formation between hair cell types in the inner ear. PLoS Genetics, 2017, 13, e1006692.	3.5	14
11	The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing. Neuroscience Letters, 2016, 610, 36-42.	2.1	34
12	Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy. Journal of Cell Science, 2015, 128, 2529-40.	2.0	21
13	Connexins and gap junctions in the inner ear – it's not just about K+ recycling. Cell and Tissue Research, 2015, 360, 633-644.	2.9	80
14	Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing. Neurobiology of Aging, 2015, 36, 2068-2084.	3.1	61
15	ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells. Human Molecular Genetics, 2015, 24, 609-624.	2.9	58
16	Junctions in human health and inherited disease. Cell and Tissue Research, 2015, 360, 435-438.	2.9	8
17	Absence of plastin 1 causes abnormal maintenance of hair cell stereocilia and a moderate form of hearing loss in mice. Human Molecular Genetics, 2015, 24, 37-49.	2.9	47
18	Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss. PLoS Genetics, 2014, 10, e1004688.	3. 5	54

#	Article	IF	CITATIONS
19	Gap Junctional Coupling is Essential for Epithelial Repair in the Avian Cochlea. Journal of Neuroscience, 2014, 34, 15851-15860.	3.6	13
20	Cochlear implantation in the mouse via the round window: Effects ofÂarray insertion. Hearing Research, 2014, 312, 81-90.	2.0	23
21	Selective Ablation of Pillar and Deiters' Cells Severely Affects Cochlear Postnatal Development and Hearing in Mice. Journal of Neuroscience, 2013, 33, 1564-1576.	3.6	54
22	The enigmatic root cell – Emerging roles contributing to fluid homeostasis within the cochlear outer sulcus. Hearing Research, 2013, 303, 1-11.	2.0	30
23	Connexin30 mediated intercellular communication plays an essential role in epithelial repair in the cochlea. Journal of Cell Science, 2013, 126, 1703-12.	2.0	24
24	Hearing Loss in a Mouse Model of 22q11.2 Deletion Syndrome. PLoS ONE, 2013, 8, e80104.	2.5	23
25	Tricellulin deficiency affects tight junction architecture and cochlear hair cells. Journal of Clinical Investigation, 2013, 123, 4036-4049.	8.2	88
26	TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biology, 2012, 2, 120068.	3.6	135
27	Hair Bundle Defects and Loss of Function in the Vestibular End Organs of Mice Lacking the Receptor-Like Inositol Lipid Phosphatase PTPRQ. Journal of Neuroscience, 2012, 32, 2762-2772.	3.6	43
28	Hearing in 44–45 year olds with m.1555A>G, a genetic mutation predisposing to aminoglycoside-induced deafness: a population based cohort study. BMJ Open, 2012, 2, e000411.	1.9	40
29	Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport. Journal of Cell Biology, 2012, 198, 343-355.	5.2	33
30	Defining the Cellular Environment in the Organ of Corti following Extensive Hair Cell Loss: A Basis for Future Sensory Cell Replacement in the Cochlea. PLoS ONE, 2012, 7, e30577.	2.5	69
31	Contractility in Type III Cochlear Fibrocytes Is Dependent on Non-muscle Myosin II and Intercellular Gap Junctional Coupling. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 473-484.	1.8	23
32	\hat{I}^2 3-integrin is required for differentiation in OC-2 cells derived from mammalian embryonic inner ear. BMC Cell Biology, 2012, 13, 5.	3.0	6
33	Assessing PCP in the Cochlea of Mammalian Ciliopathy Models. Methods in Molecular Biology, 2012, 839, 239-248.	0.9	5
34	Alstr \tilde{A} ¶m Syndrome protein ALMS1 localizes to basal bodies of cochlear hair cells and regulates cilium-dependent planar cell polarity. Human Molecular Genetics, 2011, 20, 466-481.	2.9	84
35	The aneurogenic limb identifies developmental cell interactions underlying vertebrate limb regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13588-13593.	7.1	45
36	A congenital activating mutant of WASp causes altered plasma membrane topography and adhesion under flow in lymphocytes. Blood, 2010, 115, 5355-5365.	1.4	14

#	Article	IF	CITATIONS
37	The Membrane Properties of Cochlear Root Cells are Consistent with Roles in Potassium Recirculation and Spatial Buffering. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 435-448.	1.8	35
38	Asymmetric distribution of cadherin 23 and protocadherin 15 in the kinocilial links of avian sensory hair cells. Journal of Comparative Neurology, 2010, 518, 4288-4297.	1.6	67
39	A comparative study of gland cells implicated in the nerve dependence of salamander limb regeneration. Journal of Anatomy, 2010, 217, 16-25.	1.5	42
40	Tonotopic Gradient in the Developmental Acquisition of Sensory Transduction in Outer Hair Cells of the Mouse Cochlea. Journal of Neurophysiology, 2009, 101, 2961-2973.	1.8	148
41	Patterns of expression of Bardetâ€Biedl syndrome proteins in the mammalian cochlea suggest noncentrosomal functions. Journal of Comparative Neurology, 2009, 514, 174-188.	1.6	42
42	The endolymphatic surface of the stria vascularis in the guinea-pig and the effects of ethacrynic acid as shown by scanning electron microscopy. Clinical Otolaryngology, 2009, 5, 87-95.	0.0	1
43	Connexins in the Inner Ear., 2009, , 419-434.		3
44	Rapid Hair Cell Loss: A Mouse Model for Cochlear Lesions. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 44-64.	1.8	144
45	Sox2 and Jagged1 Expression in Normal and Drug-Damaged Adult Mouse Inner Ear. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 65-89.	1.8	218
46	Tonotopic Variation in the Calcium Dependence of Neurotransmitter Release and Vesicle Pool Replenishment at Mammalian Auditory Ribbon Synapses. Journal of Neuroscience, 2008, 28, 7670-7678.	3.6	115
47	Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness. Current Opinion in Otolaryngology and Head and Neck Surgery, 2008, 16, 452-457.	1.8	104
48	MicroRNAs and regeneration: Let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt. Biochemical and Biophysical Research Communications, 2007, 362, 940-945.	2.1	81
49	Structural Support of Hair Cell Transduction. Imaging & Microscopy, 2007, 9, 40-41.	0.1	0
50	Tricellulin Is a Tight-Junction Protein Necessary for Hearing. American Journal of Human Genetics, 2006, 79, 1040-1051.	6.2	248
51	The existence of opioid receptors in the cochlea of guinea pigs. European Journal of Neuroscience, 2006, 23, 2701-2711.	2.6	24
52	Asymmetric Localization of Vangl2 and Fz3 Indicate Novel Mechanisms for Planar Cell Polarity in Mammals. Journal of Neuroscience, 2006, 26, 5265-5275.	3.6	283
53	Compartmentalized and Signal-Selective Gap Junctional Coupling in the Hearing Cochlea. Journal of Neuroscience, 2006, 26, 1260-1268.	3.6	99
54	Molecular and Functional Characterization of Gap Junctions in the Avian Inner Ear. Journal of Neuroscience, 2006, 26, 6190-6199.	3 . 6	18

#	Article	IF	CITATIONS
55	Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genetics, 2005, 37, 1135-1140.	21.4	536
56	Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian. Journal of Comparative Neurology, 2005, 484, 105-120.	1.6	73
57	DEVELOPMENTAL BIOLOGY: Life After Deaf for Hair Cells?. Science, 2005, 307, 1056-1058.	12.6	17
58	The Differentiation of Hair Cells. , 2005, , 158-203.		2
59	Opioid modulation of GABA release in the rat inferior colliculus. BMC Neuroscience, 2004, 5, 31.	1.9	22
60	Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility. Journal of Comparative Neurology, 2004, 479, 149-155.	1.6	30
61	Gap junctions in the inner ear: Comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. Journal of Comparative Neurology, 2003, 467, 207-231.	1.6	239
62	The Inner Ear Contains Heteromeric Channels Composed of Cx26 and Cx30 and Deafness-Related Mutations in Cx26 Have a Dominant Negative Effect on Cx30. Cell Communication and Adhesion, 2003, 10, 341-346.	1.0	60
63	The opioid receptors in inner ear of different stages of postnatal rats. Hearing Research, 2003, 184, 1-10.	2.0	16
64	The presence of opioid receptors in rat inner ear. Hearing Research, 2003, 181, 85-93.	2.0	49
65	Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Human Molecular Genetics, 2003, 12, 805-812.	2.9	150
66	Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Human Molecular Genetics, 2003, 12, 2049-2061.	2.9	327
67	The Inner Ear Contains Heteromeric Channels Composed of Cx26 and Cx30 and Deafness-Related Mutations in Cx26 Have a Dominant Negative Effect on Cx30. Cell Communication and Adhesion, 2003, 10, 341-346.	1.0	22
68	Connexins and Gap Junctions in the Inner Ear. Audiology and Neuro-Otology, 2002, 7, 141-145.	1.3	33
69	The molecular architecture of the inner ear. British Medical Bulletin, 2002, 63, 5-24.	6.9	72
70	Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hearing Research, 2001, 155, 1-8.	2.0	346
71	Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hearing Research, 2000, 139, 97-115.	2.0	190
72	Aminoglycoside Antibiotics. Audiology and Neuro-Otology, 2000, 5, 3-22.	1.3	545

#	Article	IF	CITATIONS
73	A sugar transporter as a candidate for the outer hair cell motor. Nature Neuroscience, 1999, 2, 713-719.	14.8	52
74	Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse., 1999, 28, 821-835.		138
75	Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. Journal of Comparative Neurology, 1998, 397, 69-88.	1.6	168
76	Intercellular junctional maturation in the stria vascularis: possible association with onset and rise of endocochlear potential. Hearing Research, 1998, 119, 81-95.	2.0	44
77	Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. Journal of Comparative Neurology, 1998, 397, 69-88.	1.6	113
78	Structural development of sensory cells in the ear. Seminars in Cell and Developmental Biology, 1997, 8, 225-237.	5.0	38
79	Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula. International Journal of Developmental Neuroscience, 1997, 15, 433-446.	1.6	110
80	Postnatal maturation of the organ of Corti in gerbils: Morphology and physiological responses. Journal of Comparative Neurology, 1997, 386, 635-651.	1.6	39
81	Postnatal maturation of the organ of Corti in gerbils: Morphology and physiological responses. Journal of Comparative Neurology, 1997, 386, 635-651.	1.6	2
82	Two modes of hair cell loss from the vestibular sensory epithelia of the guinea pig inner ear. Journal of Comparative Neurology, 1995, 355, 405-417.	1.6	158
83	Postnatal development of membrane specialisations of gerbil outer hair cells. Hearing Research, 1995, 91, 43-62.	2.0	54
84	Membrane stains as an objective means to distinguish isolated inner and outer hair cells. Hearing Research, 1993, 66, 53-57.	2.0	8
85	Structural variability of the sub-surface cisternae in intact, isolated outer hair cells shown by fluorescent labelling of intracellular membranes and freeze-fracture. Hearing Research, 1993, 64, 175-183.	2.0	26
86	Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell and Tissue Research, 1991, 265, 473-483.	2.9	150
87	Endocochlear potential generation is associated with intercellular communication in the stria vascularis: Structural analysis in the viable dominant spotting mouse mutant. Cell and Tissue Research, 1990, 262, 329-337.	2.9	41
88	The effect of gentamicin-induced hair cell loss on the tight junctions of the reticular lamina. Hearing Research, 1989, 40, 221-232.	2.0	37
89	The vessels of the stria vascularis: quantitative comparison of three rodent species. Hearing Research, 1989, 38, 111-117.	2.0	12
90	The Lateral Walls of Inner and Outer Hair Cells. , 1989, , 29-35.		5

#	Article	IF	Citations
91	Characteristics of the membrane of the stereocilia and cell apex in cochlear hair cells. Journal of Neurocytology, 1988, 17, 325-334.	1.5	14
92	Preparation of the mammalian organ of Corti for scanning electron microscopy*. Journal of Microscopy, 1987, 147, 89-101.	1.8	71
93	Specialisations of the lateral membrane of inner hair cells. Hearing Research, 1987, 31, 99-109.	2.0	13
94	The Morphology of the Normal and Pathological Cell Membrane and Junctional Complexes of the Cochlea., 1986,, 55-68.		7
95	Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment. Hearing Research, 1985, 19, 171-182.	2.0	220
96	Structural abnormalities in the stria vascularis following chronic gentamicin treatment. Hearing Research, 1985, 20, 233-244.	2.0	61
97	Gap junctions in the stria vascularis and effects of ethacrynic acid. Hearing Research, 1984, 13, 189-200.	2.0	48
98	Ultrastructural and Electrophysiological Studies of Acute Ototoxic Effects of Furosemide. International Journal of Audiology, 1982, 16, 109-116.	0.7	34
99	A tubulo-cisternal endoplasmic reticulum system in the potassium transporting marginal cells of the stria vascularis and effects of the ototoxic diuretic ethacrynic acid. Cell and Tissue Research, 1982, 226, 375-87.	2.9	27
100	Ultrastructure in the Stria Vascularis of the Guinea Pig following Intraperitoneal Injection of Ethacrynic Acid. Acta Oto-Laryngologica, 1981, 92, 439-457.	0.9	16
101	Original Papers \hat{A} · Travaux originaux: Electron Microscopy of the Stria vascularis and Its Response to Etacrynic Acid: A Study Using Electron-Dense Tracers and Extracellular Surface Markers. International Journal of Audiology, 1981, 20, 273-289.	1.7	23
102	The endolymphatic surface of the stria vascularis in the guinea?pig and the effects of ethacrynic acid as shown by scanning electron microscopy. Clinical Otolaryngology, 1980, 5, 87-95.	1.2	13
103	Observations on the stria vascularis of the guinea pig cochlea and the changes resulting from the administration of the diuretic furosemide. Clinical Otolaryngology, 1976, 1, 211-219.	1.2	32
104	Protection and Repair of Inner Ear Sensory Cells. , 0, , 199-255.		5