Ricardo J B Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287077/publications.pdf

Version: 2024-02-01

41 papers

2,153 citations

257450
24
h-index

315739 38 g-index

42 all docs 42 docs citations

times ranked

42

3336 citing authors

#	Article	IF	CITATIONS
1	Biodistribution and pulmonary metabolic effects of silver nanoparticles in mice following acute intratracheal instillations. Environmental Science and Pollution Research, 2021, 28, 2301-2314.	5.3	12
2	Cellulose Nanocrystals/Chitosan-Based Nanosystems: Synthesis, Characterization, and Cellular Uptake on Breast Cancer Cells. Nanomaterials, 2021, 11, 2057.	4.1	18
3	Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocolloids, 2020, 108, 105836.	10.7	68
4	Multifunctional hybrid structures made of open-cell aluminum foam impregnated with cellulose/graphene nanocomposites. Carbohydrate Polymers, 2020, 238, 116197.	10.2	26
5	One-Minute Synthesis of Size-Controlled Fucoidan-Gold Nanosystems: Antitumoral Activity and Dark Field Imaging. Materials, 2020, 13, 1076.	2.9	12
6	Highly Electroconductive Nanopapers Based on Nanocellulose and Copper Nanowires: A New Generation of Flexible and Sustainable Electrical Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34208-34216.	8.0	21
7	Dual nanofibrillar-based bio-sorbent films composed of nanocellulose and lysozyme nanofibrils for mercury removal from spring waters. Carbohydrate Polymers, 2020, 238, 116210.	10.2	30
8	Nanocellulose-Based Patches Loaded with Hyaluronic Acid and Diclofenac towards Aphthous Stomatitis Treatment. Nanomaterials, 2020, 10, 628.	4.1	24
9	Bio-based synthesis of oxidation resistant copper nanowires using an aqueous plant extract. Journal of Cleaner Production, 2019, 221, 122-131.	9.3	27
10	High pressure extraction of bioactive diterpenes from the macroalgae <i>Bifurcaria bifurcata </i> : an efficient and environmentally friendly approach. RSC Advances, 2019, 9, 39893-39903.	3.6	2
11	NMR Metabolomics Reveals Metabolism-Mediated Protective Effects in Liver (HepG2) Cells Exposed to Subtoxic Levels of Silver Nanoparticles. Journal of Proteome Research, 2018, 17, 1636-1646.	3.7	20
12	Tuning lysozyme nanofibers dimensions using deep eutectic solvents for improved reinforcement ability. International Journal of Biological Macromolecules, 2018, 115, 518-527.	7.5	15
13	Ionic liquids as promoters of fast lysozyme fibrillation. Journal of Molecular Liquids, 2018, 272, 456-467.	4.9	16
14	Demystifying the morphology and size control on the biosynthesis of gold nanoparticles using Eucalyptus globulus bark extract. Industrial Crops and Products, 2017, 105, 83-92.	5.2	34
15	Thermosetting AESO-bacterial cellulose nanocomposite foams with tailored mechanical properties obtained by Pickering emulsion templating. Polymer, 2017, 118, 127-134.	3.8	25
16	Exploiting poly(ionic liquids) and nanocellulose for the development of bio-based anion-exchange membranes. Biomass and Bioenergy, 2017, 100, 116-125.	5.7	40
17	Wheat chronic exposure to TiO2-nanoparticles: Cyto- and genotoxic approach. Plant Physiology and Biochemistry, 2017, 121, 89-98.	5.8	33
18	Antimicrobial Properties andÂTherapeutic Applications of Silver Nanoparticles andÂNanocomposites., 2017,, 223-259.		6

#	Article	IF	CITATIONS
19	Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocolloids, 2017, 73, 120-128.	10.7	142
20	Control of Listeria innocua biofilms by biocompatible photodynamic antifouling chitosan based materials. Dyes and Pigments, 2017, 137, 265-276.	3.7	40
21	1 Development and applications of cellulose nanofibres based polymer nanocomposites., 2017,, 1-65.		8
22	Timesaving microwave assisted synthesis of insulin amyloid fibrils with enhanced nanofiber aspect ratio. International Journal of Biological Macromolecules, 2016, 92, 225-231.	7. 5	7
23	Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions. Colloids and Surfaces B: Biointerfaces, 2016, 147, 36-44.	5.0	34
24	Fluorescent Bioactive Corrole Grafted-Chitosan Films. Biomacromolecules, 2016, 17, 1395-1403.	5.4	53
25	An overview of luminescent bioâ€based composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	24
26	Unveiling the Chemistry behind the Green Synthesis of Metal Nanoparticles. ChemSusChem, 2014, 7, 2704-2711.	6.8	37
27	Cationic release behaviour of antimicrobial cellulose/silver nanocomposites. Cellulose, 2014, 21, 3551-3560.	4.9	12
28	One-pot synthesis of biofoams from castor oil and cellulose microfibers for energy absorption impact materials. Cellulose, 2014, 21, 1723-1733.	4.9	12
29	Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids and Surfaces B: Biointerfaces, 2013, 103, 143-148.	5.0	110
30	Luminescent Transparent Composite Films Based on Lanthanopolyoxometalates and Filmogenic Polysaccharides. European Journal of Inorganic Chemistry, 2013, 2013, 1890-1896.	2.0	15
31	Antibacterial Activity of Nanocomposites of Copper and Cellulose. BioMed Research International, 2013, 2013, 1-6.	1.9	101
32	Growth and Chemical Stability of Copper Nanostructures on Cellulosic Fibers. European Journal of Inorganic Chemistry, 2012, 2012, 5043-5049.	2.0	37
33	Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose, 2012, 19, 1425-1436.	4.9	161
34	Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydrate Research, 2012, 348, 77-83.	2.3	136
35	Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chemistry, 2011, 13, 419.	9.0	126
36	Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomaterialia, 2009, 5, 2279-2289.	8.3	262

#	Article	IF	CITATIONS
37	Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Composites Science and Technology, 2009, 69, 1051-1056.	7.8	104
38	Silverâ€bacterial cellulosic sponges as active SERS substrates. Journal of Raman Spectroscopy, 2008, 39, 439-443.	2.5	97
39	Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolytes assembly. Composites Science and Technology, 2008, 68, 1088-1093.	7.8	97
40	Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. Journal of Colloid and Interface Science, 2007, 312, 506-512.	9.4	78
41	Composites of Cellulose and Metal Nanoparticles. , 0, , .		31