Luigi Camporota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287045/publications.pdf

Version: 2024-02-01

147 papers 14,177 citations

35 h-index 20961 115 g-index

156 all docs

156
docs citations

156 times ranked 17762 citing authors

#	Article	IF	CITATIONS
1	Mechanical ventilation in COVIDâ€19: A physiological perspective. Experimental Physiology, 2022, 107, 683-693.	2.0	23
2	Prone Position in COVID-19 and -COVID-19 Acute Respiratory Distress Syndrome: An International Multicenter Observational Comparative Study*. Critical Care Medicine, 2022, 50, 633-643.	0.9	42
3	Outcomes of critically ill COVID-19 patients managed in a high-volume severe respiratory failure and ECMO centre in the United Kingdom. Journal of the Intensive Care Society, 2022, 23, 233-236.	2.2	3
4	Prone to deâ€stress the vulnerable lung. Experimental Physiology, 2022, 107, 743-744.	2.0	1
5	Artificial intelligence for mechanical ventilation: systematic review of design, reporting standards, and bias. British Journal of Anaesthesia, 2022, 128, 343-351.	3.4	24
6	Pathophysiology of coronavirus-19 disease acute lung injury. Current Opinion in Critical Care, 2022, 28, 9-16.	3.2	46
7	Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study. British Journal of Anaesthesia, 2022, 128, 1052-1058.	3.4	4
8	A randomised controlled trial of non-invasive ventilation compared with extracorporeal carbon dioxide removal for acute hypercapnic exacerbations of chronic obstructive pulmonary disease. Annals of Intensive Care, 2022, 12, 36.	4.6	5
9	A survey on the practices and capabilities in the management of respiratory failure in South East England. Journal of the Intensive Care Society, 2021, 22, 175-181.	2.2	1
10	COVID-19: UK frontline intensivists' emerging learning. Journal of the Intensive Care Society, 2021, 22, 211-213.	2.2	2
11	Reply to Tobin et al.: Respiratory Drive Measurements Do Not Signify Conjectural Patient Self-inflicted Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 143-144.	5.6	4
12	COVID-19 and ARDS: the baby lung size matters. Intensive Care Medicine, 2021, 47, 133-134.	8.2	20
13	Pathophysiology of COVID-19-associated acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2021, 9, e1.	10.7	22
14	"Established―Respiratory Treatment in Acute Respiratory Distress Syndrome: Scientific Rigor or a Square Peg in a Round Hole?. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 779-779.	5.6	0
15	Clearance of inflammatory cytokines in patients with septic acute kidney injury during renal replacement therapy using the EMiC2 filter (Clic-AKI study). Critical Care, 2021, 25, 39.	5.8	17
16	Complexity and unanswered questions in the pathophysiology of COVID-19 ARDS. Intensive Care Medicine, 2021, 47, 495-496.	8.2	6
17	Assessment of Right Ventricular Function With CT and Echocardiography in Patients With Severe Acute Respiratory Distress Syndrome on Extracorporeal Membrane Oxygenation., 2021, 3, e0345.		9
18	Consensus on the referral and admission of patients with severe respiratory failure to the NHS ECMO service. Lancet Respiratory Medicine, the, 2021, 9, e16-e17.	10.7	32

#	Article	IF	CITATIONS
19	Functional pathophysiology of SARS-CoV-2-induced acute lung injury and clinical implications. Journal of Applied Physiology, 2021, 130, 877-891.	2.5	40
20	Re: Insight into ECMO, mortality and ARDS: a nationwide analysis of 45,647 ECMO runs (Friedrichson et) Tj ETQ)q0 <u>0,</u> 8 rgl	3T /8verlock 1
21	Physiological Basis of Extracorporeal Membrane Oxygenation and Extracorporeal Carbon Dioxide Removal in Respiratory Failure. Membranes, 2021, 11, 225.	3.0	22
22	Phenotypes of severe COVID-19 ARDS receiving extracorporeal membrane oxygenation. British Journal of Anaesthesia, 2021, 126, e130-e132.	3.4	11
23	A Comparison of Thrombosis and Hemorrhage Rates in Patients With Severe Respiratory Failure Due to Coronavirus Disease 2019 and Influenza Requiring Extracorporeal Membrane Oxygenation. Critical Care Medicine, 2021, 49, e663-e672.	0.9	40
24	Impact and Determinants of High-Sensitivity Cardiac Troponin-T Concentration in Patients With COVID-19 Admitted to Critical Care. American Journal of Cardiology, 2021, 147, 129-136.	1.6	17
25	Natural history, trajectory, and management of mechanically ventilated COVID-19 patients in the United Kingdom. Intensive Care Medicine, 2021, 47, 549-565.	8.2	49
26	High risk of patient self-inflicted lung injury in COVID-19 with frequently encountered spontaneous breathing patterns: a computational modelling study. Annals of Intensive Care, 2021, 11, 109.	4.6	55
27	Critical care outcomes from COVIDâ€19: patients, interventions, healthcare systems and the need for core datasets. Anaesthesia, 2021, 76, 1155-1158.	3.8	1
28	Acute kidney injury prevalence, progression and long-term outcomes in critically ill patients with COVID-19: a cohort study. Annals of Intensive Care, 2021, 11, 123.	4.6	47
29	Effect of Lower Tidal Volume Ventilation Facilitated by Extracorporeal Carbon Dioxide Removal vs Standard Care Ventilation on 90-Day Mortality in Patients With Acute Hypoxemic Respiratory Failure. JAMA - Journal of the American Medical Association, 2021, 326, 1013.	7.4	108
30	Improved oxygenation with inhaled milrinone in mechanically ventilated patients with severe COVID-19. British Journal of Anaesthesia, 2021, 127, e111-e113.	3.4	7
31	Role of total lung stress on the progression of early COVID-19 pneumonia. Intensive Care Medicine, 2021, 47, 1130-1139.	8.2	51
32	Standardised PaO2/FiO2 ratio in COVID-19: Added value or risky assumptions?. European Journal of Internal Medicine, 2021, 92, 31-33.	2.2	3
33	Relationship Between Skeletal Muscle Area and Density and Clinical Outcome in Adults Receiving Venovenous Extracorporeal Membrane Oxygenation. Critical Care Medicine, 2021, 49, e350-e359.	0.9	10
34	COVID-19 pneumonia: pathophysiology and management. European Respiratory Review, 2021, 30, 210138.	7.1	84
35	Bedside noninvasive monitoring of mechanically ventilated patients. Current Opinion in Critical Care, 2021, 27, 66-75.	3.2	2
36	Evaluating the potential for respiratory metagenomics to improve treatment of secondary infection and detection of nosocomial transmission on expanded COVID-19 intensive care units. Genome Medicine, 2021, 13, 182.	8.2	32

#	Article	IF	Citations
37	Diagnosis of death using neurological criteria in adult patients on extracorporeal membrane oxygenation: Development of UK guidance. Journal of the Intensive Care Society, 2020, 21, 28-32.	2.2	9
38	Sedation with alfentanil versus fentanyl in patients receiving extracorporeal membrane oxygenation: outcomes from a single-centre retrospective study. Perfusion (United Kingdom), 2020, 35, 104-109.	1.0	5
39	In-vitro performance of a low flow extracorporeal carbon dioxide removal circuit. Perfusion (United) Tj ETQq1 1 (0.784314 1.0	rgBT/Overlo
40	Prevention and treatment of acute lung injury with time-controlled adaptive ventilation: physiologically informed modification of airway pressure release ventilation. Annals of Intensive Care, 2020, 10, 3.	4.6	53
41	Mechanical Ventilation Redistributes Blood to Poorly Ventilated Areas in Experimental Lung Injury*. Critical Care Medicine, 2020, 48, e200-e208.	0.9	15
42	Acute kidney injury as a risk factor of hyperactive delirium: A case control study. Journal of Critical Care, 2020, 55, 194-197.	2.2	12
43	Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Medicine, 2020, 46, 2187-2196.	8.2	169
44	A left shift in the oxyhaemoglobin dissociation curve in patients with severe coronavirus disease 2019 (COVIDâ€19). British Journal of Haematology, 2020, 191, 390-393.	2.5	37
45	Use of Intravenous Immunoglobulins in Patients with Suspected Toxin-Mediated Shock Requiring Extracorporeal Membrane Oxygenation. Shock, 2020, 54, 209-212.	2.1	3
46	Timing of Tracheostomy for Prolonged Respiratory Wean in Critically Ill Coronavirus Disease 2019 Patients: A Machine Learning Approach., 2020, 2, e0279.		14
47	Pulmonary ischaemia without pulmonary arterial thrombus in COVID-19 patients receiving extracorporeal membrane oxygenation: a cohort study. Clinical Radiology, 2020, 75, 795.e1-795.e5.	1.1	15
48	Inflammatory and microbiological associations with near-fatal asthma requiring extracorporeal membrane oxygenation. ERJ Open Research, 2020, 6, 00267-2019.	2.6	11
49	Nonantibiotic Pharmacological Treatment of Severe Chronic Obstructive Pulmonary Disease Exacerbations. Seminars in Respiratory and Critical Care Medicine, 2020, 41, 842-850.	2.1	3
50	Physiological dead space ventilation, disease severity and outcome in ventilated patients with hypoxaemic respiratory failure due to coronavirus disease 2019. Intensive Care Medicine, 2020, 46, 2092-2093.	8.2	19
51	Outcomes of the NHS England National Extracorporeal Membrane Oxygenation Service for adults with respiratory failure: a multicentre observational cohort study. British Journal of Anaesthesia, 2020, 125, 259-266.	3.4	26
52	The Respiratory Drive: An Overlooked Tile of COVID-19 Pathophysiology. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1079-1080.	5.6	40
53	Veno-venous extracorporeal membrane oxygenation in coronavirus disease 2019: a case series. ERJ Open Research, 2020, 6, 00463-2020.	2.6	24
54	Effect of awake prone positioning in hypoxaemic adult patients with COVID-19. Journal of the Intensive Care Society, 2020, , 175114372096124.	2.2	6

#	Article	IF	CITATIONS
55	Outcomes in mechanically ventilated patients with hypoxaemic respiratory failure caused by COVID-19. British Journal of Anaesthesia, 2020, 125, e480-e483.	3.4	13
56	COVID-19-related organ dysfunction and management strategies on the intensive care unit: a narrative review. British Journal of Anaesthesia, 2020, 125, 912-925.	3.4	36
57	Nutritional interventions to modulate haemoglobin-oxygen affinity in COVID-19 patients. Clinical Nutrition, 2020, 39, 3843-3844.	5.0	3
58	Management of acute respiratory failure. Medicine, 2020, 48, 397-403.	0.4	1
59	Prediction of readiness to decannulation from venovenous extracorporeal membrane oxygenation. Perfusion (United Kingdom), 2020, 35, 57-64.	1.0	9
60	Surge capacity and updated admission criteria: response of the NHS-commissioned national respiratory extracorporeal membrane oxygenation network to the COVID-19 pandemic. British Journal of Anaesthesia, 2020, 125, e282-e283.	3.4	4
61	From phenotypes to black holes… and back. Intensive Care Medicine, 2020, 46, 1498-1499.	8.2	1
62	Personal protective equipment and intensive care unit healthcare worker safety in the COVID-19 era (PPE-SAFE): An international survey. Journal of Critical Care, 2020, 59, 70-75.	2.2	234
63	Identification of pathophysiological patterns for triage and respiratory support in COVID-19. Lancet Respiratory Medicine,the, 2020, 8, 752-754.	10.7	39
64	COVID-19 phenotypes: leading or misleading?. European Respiratory Journal, 2020, 56, 2002195.	6.7	20
65	Restrictive Transfusion Practice in Adults Receiving Venovenous Extracorporeal Membrane Oxygenation: A Single-Center Experience., 2020, 2, e0077.		17
66	In vivo carbon dioxide clearance of a low-flow extracorporeal carbon dioxide removal circuit in patients with acute exacerbations of chronic obstructive pulmonary disease. Perfusion (United) Tj ETQq0 0 0 rgE	BT /Ov erloo	ck 10 Tf 50 29
67	COVID-19 pneumonia: different respiratory treatments for different phenotypes?. Intensive Care Medicine, 2020, 46, 1099-1102.	8.2	1,443
68	Extracorporeal Membrane Oxygenation for Respiratory Failure. Anesthesiology, 2020, 132, 1257-1276.	2.5	37
69	Spontaneous breathing, transpulmonary pressure and mathematical trickery. Annals of Intensive Care, 2020, 10, 88.	4.6	36
70	COVID-19: scientific reasoning, pragmatism and emotional bias. Annals of Intensive Care, 2020, 10, 134.	4.6	11
71	Extracorporeal carbon dioxide removal for acute hypercapnic exacerbations of chronic obstructive pulmonary disease: study protocol for a randomised controlled trial. Trials, 2019, 20, 465.	1.6	6
72	Distance between the tips of central venous catheters does not depend on same or opposite site access. Journal of the Intensive Care Society, 2019, 20, NP15-NP16.	2.2	4

#	Article	IF	Citations
73	Assessment of Work of Breathing in Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2019, 16, 418-428.	1.6	4
74	How I wean patients from veno-venous extra-corporeal membrane oxygenation. Critical Care, 2019, 23, 316.	5.8	43
75	Outcomes of emergency laparotomy in patients on extracorporeal membrane oxygenation for severe respiratory failure: A retrospective, observational cohort study. Journal of Critical Care, 2019, 53, 253-257.	2.2	5
76	Physiotherapist prediction of extubation outcome in the adult intensive care unit. Physiotherapy Research International, 2019, 24, e1793.	1.5	7
77	Indicators of Airway Secretion Weight in Mechanically Ventilated Subjects. Respiratory Care, 2019, 64, 1377-1386.	1.6	6
78	Understanding Lactatemia in Human Sepsis. Potential Impact for Early Management. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 582-589.	5.6	90
79	Positive End-expiratory Pressure and Mechanical Power. Anesthesiology, 2019, 130, 119-130.	2.5	80
80	What links ventilator driving pressure with survival in the acute respiratory distress syndrome? A computational study. Respiratory Research, 2019, 20, 29.	3.6	38
81	Lung Recruitability in Severe Acute Respiratory Distress Syndrome Requiring Extracorporeal Membrane Oxygenation. Critical Care Medicine, 2019, 47, 1177-1183.	0.9	29
82	The use of extracorporeal membrane oxygenation in HIV-positive patients with severe respiratory failure: a retrospective observational case series. International Journal of STD and AIDS, 2019, 30, 316-322.	1.1	7
83	Safety of Percutaneous Dilatational Tracheostomy During Veno-Venous Extracorporeal Membrane Oxygenation Support in Adults With Severe Respiratory Failure. Critical Care Medicine, 2019, 47, e81-e88.	0.9	18
84	High-flow oxygen therapy in tracheostomized patients at high risk of weaning failure. Annals of Intensive Care, 2019, 9, 4.	4.6	31
85	Dynamic single-slice CT estimates whole-lung dual-energy CT variables in pigs with and without experimental lung injury. Intensive Care Medicine Experimental, 2019, 7, 59.	1.9	7
86	Monitoring of regional lung ventilation using electrical impedance tomography. Minerva Anestesiologica, 2019, 85, 1231-1241.	1.0	14
87	Protocolised non-invasive compared with invasive weaning from mechanical ventilation for adults in intensive care: the Breathe RCT. Health Technology Assessment, 2019, 23, 1-114.	2.8	4
88	Pulmonary vasoactive drugs., 2019,, 195-200.		0
89	Acceptance and transfer to a regional severe respiratory failure and venoâ€venous extracorporeal membrane oxygenation (ECMO) service: predictors and outcomes. Anaesthesia, 2018, 73, 177-186.	3.8	19
90	Septic shock-3 vs 2: an analysis of the ALBIOS study. Critical Care, 2018, 22, 237.	5.8	17

#	Article	IF	CITATIONS
91	Effect of Protocolized Weaning With Early Extubation to Noninvasive Ventilation vs Invasive Weaning on Time to Liberation From Mechanical Ventilation Among Patients With Respiratory Failure. JAMA - Journal of the American Medical Association, 2018, 320, 1881.	7.4	68
92	Physiological effects of the open lung approach during laparoscopic cholecystectomy: focus on driving pressure. Minerva Anestesiologica, 2018, 84, 159-167.	1.0	18
93	Veno-arterio-venous ECMO for septic cardiomyopathy: a single-centre experience. Perfusion (United) Tj ETQq1 1	0.784314 1.0	rgBT /Overlo
94	Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respiratory Medicine, the, 2018, 6, 691-698.	10.7	455
95	High-flow nasal cannula oxygen therapy decreases postextubation neuroventilatory drive and work of breathing in patients with chronic obstructive pulmonary disease. Critical Care, 2018, 22, 180.	5.8	72
96	Estimation of true driving pressure during airway pressure release ventilation. Intensive Care Medicine, 2018, 44, 1364-1365.	8.2	5
97	Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax, 2017, 72, 83-93.	5.6	580
98	Severe Respiratory Failure, Extracorporeal Membrane Oxygenation, and Intracranial Hemorrhage*. Critical Care Medicine, 2017, 45, 1642-1649.	0.9	84
99	Electromagnetically guided bedside placement of post-pyloric feeding tubes in critical care. British Journal of Nursing, 2017, 26, 1008-1015.	0.7	10
100	An international survey: the role of specialist nurses in adult respiratory extracorporeal membrane oxygenation. Nursing in Critical Care, 2017, 22, 305-311.	2.3	40
101	Driving pressure and mechanical power: new targets for VILI prevention. Annals of Translational Medicine, 2017, 5, 286-286.	1.7	170
102	Intensive care in the very old: how gently should we go into that good night?. Minerva Anestesiologica, 2017, 83, 549-552.	1.0	0
103	The evolving role and practical application of extracorporeal carbon dioxide removal in critical care. Critical Care and Resuscitation: Journal of the Australasian Academy of Critical Care Medicine, 2017, 19, 62-67.	0.1	5
104	Current Applications for the Use of Extracorporeal Carbon Dioxide Removal in Critically Ill Patients. BioMed Research International, 2016, 2016, 1-8.	1.9	29
105	A Retrospective Observational Case Series of Low-Flow Venovenous Extracorporeal Carbon Dioxide Removal Use in Patients with Respiratory Failure. ASAIO Journal, 2016, 62, 458-462.	1.6	23
106	Intracardiac Right-to-Left Shunt Impeding Liberation From Veno-Venous Extracorporeal Membrane Oxygenation: Two Case Studies. Critical Care Medicine, 2016, 44, e583-e586.	0.9	4
107	The authors reply. Critical Care Medicine, 2016, 44, e449-e450.	0.9	0
108	Electrical impedance tomography to determine optimal positive end-expiratory pressure in severe chronic obstructive pulmonary disease. Critical Care, 2016, 20, 295.	5.8	19

#	Article	IF	CITATIONS
109	P132â€Factors associated with near-fatal asthma requiring extracorporeal membrane oxygenation. Thorax, 2016, 71, A154.3-A155.	5 . 6	O
110	Short-term and medium-term survival of critically ill patients with solid tumours admitted to the intensive care unit: a retrospective analysis. BMJ Open, 2016, 6, e011363.	1.9	37
111	Retrospective Observational Review of Percutaneous Cannulation for Extracorporeal Membrane Oxygenation. ASAIO Journal, 2016, 62, 325-328.	1.6	32
112	Anaemia is not a risk factor for progression of acute kidney injury: a retrospective analysis. Critical Care, 2016, 20, 52.	5.8	8
113	Ethics, law, and communication., 2016,, 411-422.		0
114	Gastroenterology and hepatology. , 2016, , 151-188.		0
115	Injury: trauma and environmental. , 2016, , 297-326.		0
116	Measurement of cardiovascular state using attractor reconstruction analysis. , 2015, , .		13
117	Prevalence of Venous Thrombosis Following Venovenous Extracorporeal Membrane Oxygenation in Patients With Severe Respiratory Failure. Critical Care Medicine, 2015, 43, e581-e584.	0.9	76
118	International survey on the management of mechanical ventilation during ECMO in adults with severe respiratory failure. Minerva Anestesiologica, 2015, 81, 1170-83, 77 p following 1183.	1.0	29
119	Optimising the Windkessel model for cardiac output monitoring during changes in vascular tone. , 2014, 2014, 3759-62.		3
120	Influence of ventilatory strategy on the PRESERVE mortality risk score. Intensive Care Medicine, 2014, 40, 296-296.	8.2	1
121	Effects of manually-assisted cough combined with postural drainage, saline instillation and airway suctioning in critically-ill patients during high-frequency oscillatory ventilation: a prospective observational single centre trial. Physiotherapy Theory and Practice, 2014, 30, 306-311.	1.3	3
122	Physiological predictors of survival during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Critical Care, 2013, 17, R40.	5.8	33
123	Response:. Journal of the Intensive Care Society, 2013, 14, 273-274.	2.2	0
124	Rationale and study design of ViPS – variable pressure support for weaning from mechanical ventilation: study protocol for an international multicenter randomized controlled open trial. Trials, 2013, 14, 363.	1.6	8
125	Individualising Management of Severe Respiratory Failure and the Specialist Commissioned Severe Respiratory Failure Service for England. Journal of the Intensive Care Society, 2013, 14, 114-119.	2.2	4
126	Clinical review: Lung imaging in acute respiratory distress syndrome patients - an update. Critical Care, 2013, 17, 243.	5.8	52

#	Article	IF	Citations
127	Lung protective ventilation. BMJ, The, 2012, 344, e2491-e2491.	6.0	14
128	The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Medicine, 2012, 38, 1573-1582.	8.2	1,112
129	Extravascular lung water in acute respiratory distress syndrome: potential clinical value, assumptions and limitations. Critical Care, 2012, 16, 114.	5.8	6
130	Number needed to treat and cost-effectiveness in the prevention of ventilator-associated pneumonia. Critical Care, 2012, 16, 430.	5.8	19
131	Assessment of regional lung mechanics with electrical impedance tomography can determine the requirement for ECMO in patients with severe ARDS. Intensive Care Medicine, 2012, 38, 2086-2087.	8.2	13
132	Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2012, 307, 2526-33.	7.4	6,995
133	What's new in the "Berlin" definition of acute respiratory distress syndrome?. Minerva Anestesiologica, 2012, 78, 1162-6.	1.0	10
134	Care bundles: implementing evidence or common sense?. Critical Care, 2011, 15, 159.	5.8	11
135	Pitfalls in haemodynamic monitoring based on the arterial pressure waveform. Critical Care, 2010, 14, 124.	5.8	50
136	Year in review 2008: Critical Care - cardiology. Critical Care, 2009, 13, 229.	5.8	0
137	Year in review 2007: Critical Care – cardiology. Critical Care, 2008, 12, 232.	5.8	0
138	Filter survival time and requirement of blood products in patients with severe sepsis receiving drotrecogin alfa (activated) and requiring renal replacement therapy. Critical Care, 2008, 12, R163.	5.8	3
139	Practical aspects of treatment with drotrecogin alfa (activated). Critical Care, 2007, 11, S7.	5.8	13
140	Advantages of ProSealâ,, and SLIPAâ, airways over tracheal tubes for gynecological laparoscopies. Canadian Journal of Anaesthesia, 2006, 53, 188-193.	1.6	68
141	Comparison between Prospective and Retrospective Evaluation of Crohn's Disease Activity Index. American Journal of Gastroenterology, 2005, 100, 1117-1120.	0.4	30
142	Comparison between prospective and retrospective evaluation of Crohn's disease activity index. Gastroenterology, 2003, 124, A193.	1.3	1
143	The effects of Mycobacterium vaccaeon allergen-induced airway responses in atopic asthma. European Respiratory Journal, 2003, 21, 287-293.	6.7	79
144	Interleukin-12 and the development of atopy. Clinical and Experimental Allergy, 2001, 31, 1481-1484.	2.9	3

#	Article	IF	CITATIONS
145	Effects of Specific Immunotherapy in Allergic Rhinitic Individuals with Bronchial Hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 2048-2052.	5. 6	126
146	Interleukin-12 and allergic tissue response. Clinical and Experimental Allergy, 1999, 29, 1298-1300.	2.9	4
147	Response to: Respiratory protection for airway operators – Response to "aerosol generation during percutaneous tracheostomy insertionâ€. Journal of the Intensive Care Society, 0, , 175114372199654.	2.2	0