List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2869371/publications.pdf Version: 2024-02-01

		47006	30922
132	11,120	47	102
papers	citations	h-index	g-index
134	134	134	21266
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Endothelial Zeb2 preserves the hepatic angioarchitecture and protects against liver fibrosis. Cardiovascular Research, 2022, 118, 1262-1275.	3.8	16
2	Assessing Tumor-Infiltrating Lymphocytes in Breast Cancer: A Proposal for Combining Immunohistochemistry and Gene Expression Analysis to Refine Scoring. Frontiers in Immunology, 2022, 13, 794175.	4.8	13
3	Extension of the Virtual Cell Based Assay from a 2-D to a 3-D Cell Culture Model. ATLA Alternatives To Laboratory Animals, 2022, 50, 45-56.	1.0	2
4	Editorial: Roles of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease. Frontiers in Physiology, 2022, 13, 869473.	2.8	0
5	Improved Precision-Cut Liver Slice Cultures for Testing Drug-Induced Liver Fibrosis. Frontiers in Medicine, 2022, 9, 862185.	2.6	4
6	Regeneration Defects in Yap and Taz Mutant Mouse Livers Are Caused by Bile Duct Disruption and Cholestasis. Gastroenterology, 2021, 160, 847-862.	1.3	38
7	PU.1 drives specification of pluripotent stem cell-derived endothelial cells to LSEC-like cells. Cell Death and Disease, 2021, 12, 84.	6.3	25
8	Directed differentiation of human induced pluripotent stem cells to hepatic stellate cells. Nature Protocols, 2021, 16, 2542-2563.	12.0	26
9	Best Practices and Progress in Precision-Cut Liver Slice Cultures. International Journal of Molecular Sciences, 2021, 22, 7137.	4.1	21
10	Direct reprogramming of somatic cells into induced hepatocytes: Cracking the Enigma code. Journal of Hepatology, 2021, 75, 690-705.	3.7	15
11	A fully defined matrix to support a pluripotent stem cell derived multi-cell-liver steatohepatitis and fibrosis model. Biomaterials, 2021, 276, 121006.	11.4	19
12	Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metabolism, 2021, 33, 1763-1776.e5.	16.2	28
13	Gene Signatures Detect Damaged Liver Sinusoidal Endothelial Cells in Chronic Liver Diseases. Frontiers in Medicine, 2021, 8, 750044.	2.6	9
14	Initiation of hepatic stellate cell activation extends into chronic liver disease. Cell Death and Disease, 2021, 12, 1110.	6.3	23
15	The fibrotic response of primary liver spheroids recapitulates in vivo hepatic stellate cell activation. Biomaterials, 2020, 261, 120335.	11.4	21
16	Single cell RNA sequencing analysis did not predict hepatocyte infection by SARS-CoV-2. Journal of Hepatology, 2020, 73, 993-995.	3.7	31
17	Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opinion on Pharmacotherapy, 2020, 21, 1637-1649.	1.8	42
18	The miRFIB-Score: A Serological miRNA-Based Scoring Algorithm for the Diagnosis of Significant Liver Fibrosis. Cells, 2019, 8, 1003.	4.1	19

#	Article	IF	CITATIONS
19	Meta-Analysis of Human and Mouse Biliary Epithelial Cell Gene Profiles. Cells, 2019, 8, 1117.	4.1	8
20	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	14.3	384
21	Comparison of the Opn-CreER and Ck19-CreER Drivers in Bile Ducts of Normal and Injured Mouse Livers. Cells, 2019, 8, 380.	4.1	12
22	A PDGFRβ-based score predicts significant liver fibrosis in patients with chronic alcohol abuse, NAFLD and viral liver disease. EBioMedicine, 2019, 43, 501-512.	6.1	24
23	Reactive cholangiocytes differentiate into proliferative hepatocytes with efficient DNA repair in mice with chronic liver injury. Journal of Hepatology, 2019, 70, 1180-1191.	3.7	61
24	Unfolded protein response is an early, non-critical event during hepatic stellate cell activation. Cell Death and Disease, 2019, 10, 98.	6.3	27
25	Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science, 2019, 366, 1029-1034.	12.6	140
26	Aldehyde dehydrogenase activity of Wharton jelly mesenchymal stromal cells: isolation and characterization. Cytotechnology, 2019, 71, 427-441.	1.6	5
27	Aldehyde Dehydrogenase Activity in Adipose Tissue: Isolation and Gene Expression Profile of Distinct Sub-population of Mesenchymal Stromal Cells. Stem Cell Reviews and Reports, 2018, 14, 599-611.	5.6	12
28	Isolation and Characterization of Bone Marrow Mesenchymal Stromal Cell Subsets in Culture Based on Aldehyde Dehydrogenase Activity. Tissue Engineering - Part C: Methods, 2018, 24, 89-98.	2.1	3
29	Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 819-830.	3.8	22
30	Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression. Cancer Research, 2018, 78, 1155-1168.	0.9	27
31	Prospects in non-invasive assessment of liver fibrosis: Liquid biopsy as the future gold standard?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1024-1036.	3.8	41
32	Immuno-biological comparison of hepatic stellate cells in a reverted and activated state. Biomedicine and Pharmacotherapy, 2018, 98, 52-62.	5.6	3
33	P311, Friend, or Foe of Tissue Fibrosis?. Frontiers in Pharmacology, 2018, 9, 1151.	3.5	21
34	Generation of Hepatic Stellate Cells from Human Pluripotent Stem Cells Enables InÂVitro Modeling of Liver Fibrosis. Cell Stem Cell, 2018, 23, 101-113.e7.	11.1	170
35	Foreskin-derived mesenchymal stromal cells with aldehyde dehydrogenase activity: isolation and gene profiling. BMC Cell Biology, 2018, 19, 4.	3.0	10
36	Pentraxinâ€3 modulates lipopolysaccharideâ€induced inflammatory response and attenuates liver injury. Hepatology, 2017, 66, 953-968.	7.3	39

#	Article	IF	CITATIONS
37	Functionality based method for simultaneous isolation of rodent hepatic sinusoidal cells. Biomaterials, 2017, 139, 91-101.	11.4	17
38	Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods. Computational Toxicology, 2017, 4, 31-44.	3.3	75
39	3D in vitro models of liver fibrosis. Advanced Drug Delivery Reviews, 2017, 121, 133-146.	13.7	104
40	Human liver mesenchymal stem/progenitor cells inhibit hepatic stellate cell activation: in vitro and in vivo evaluation. Stem Cell Research and Therapy, 2017, 8, 131.	5.5	36
41	Human hepatic stellate cells and inflammation: A regulated cytokine network balance. Cytokine, 2017, 90, 130-134.	3.2	11
42	Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells. Stem Cells, 2017, 35, 611-625.	3.2	41
43	Combination of tauroursodeoxycholic acid and Nâ€acetylcysteine exceeds standard treatment for acetaminophen intoxication. Liver International, 2017, 37, 748-756.	3.9	24
44	Circulating ECV-Associated miRNAs as Potential Clinical Biomarkers in Early Stage HBV and HCV Induced Liver Fibrosis. Frontiers in Pharmacology, 2017, 8, 56.	3.5	37
45	RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers. Cell Death and Disease, 2017, 8, e3164-e3164.	6.3	11
46	Modulation of the Unfolded Protein Response by Tauroursodeoxycholic Acid Counteracts Apoptotic Cell Death and Fibrosis in a Mouse Model for Secondary Biliary Liver Fibrosis. International Journal of Molecular Sciences, 2017, 18, 214.	4.1	24
47	Brief Report: The Deletion of the Phosphatase Regulator NIPP1 Causes Progenitor Cell Expansion in the Adult Liver. Stem Cells, 2016, 34, 2256-2262.	3.2	10
48	Infliximab and Dexamethasone Attenuate the Ductular Reaction in Mice. Scientific Reports, 2016, 6, 36586.	3.3	6
49	The GALAD scoring algorithm based on AFP, AFP-L3, and DCP significantly improves detection of BCLC early stage hepatocellular carcinoma. Zeitschrift Fur Gastroenterologie, 2016, 54, 1296-1305.	0.5	83
50	Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. Journal of Hepatology, 2016, 64, 609-617.	3.7	102
51	FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Scientific Reports, 2016, 6, 33453.	3.3	168
52	Epigenetic regulation of hepatic stellate cell activation and liver fibrosis. Expert Review of Gastroenterology and Hepatology, 2016, 10, 1397-1408.	3.0	23
53	Novel human hepatic organoid model enables testing of drug-induced liver fibrosis inÂvitro. Biomaterials, 2016, 78, 1-10.	11.4	181
54	Macrophage Depletion Attenuates Extracellular Matrix Deposition and Ductular Reaction in a Mouse Model of Chronic Cholangiopathies. PLoS ONE, 2016, 11, e0162286.	2.5	25

#	Article	IF	CITATIONS
55	Integrative miRNA and Gene Expression Profiling Analysis of Human Quiescent Hepatic Stellate Cells. Scientific Reports, 2015, 5, 11549.	3.3	79
56	Hepatic Stellate Cells Improve Engraftment of Human Primary Hepatocytes: A Preclinical Transplantation Study in an Animal Model. Cell Transplantation, 2015, 24, 2557-2571.	2.5	19
57	Time-Dependent Effect of Hypoxia on Tumor Progression and Liver Progenitor Cell Markers in Primary Liver Tumors. PLoS ONE, 2015, 10, e0119555.	2.5	12
58	The role of miRNAs in stress-responsive hepatic stellate cells during liver fibrosis. Frontiers in Physiology, 2015, 6, 209.	2.8	31
59	Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget, 2015, 6, 26729-26745.	1.8	61
60	The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. Journal of Hepatology, 2015, 63, 679-688.	3.7	284
61	Next generation of ALDH substrates and their potential to study maturational lineage biology in stem and progenitor cells. American Journal of Physiology - Renal Physiology, 2015, 308, G573-G578.	3.4	17
62	EpCAM and the biology of hepatic stem/progenitor cells. American Journal of Physiology - Renal Physiology, 2015, 308, G233-G250.	3.4	102
63	Influence of inflammation on the immunological profile of adult-derived human liver mesenchymal stromal cells and stellate cells. Cytotherapy, 2015, 17, 174-185.	0.7	43
64	Inhibitory effect of dietary capsaicin on liver fibrosis in mice. Molecular Nutrition and Food Research, 2015, 59, 1107-1116.	3.3	16
65	Are dietary emulsifiers making us fat?. Journal of Hepatology, 2015, 63, 1045-1048.	3.7	4
66	In vitro reversion of activated primary human hepatic stellate cells. Fibrogenesis and Tissue Repair, 2015, 8, 14.	3.4	68
67	P311 modulates hepatic stellate cells migration. Liver International, 2015, 35, 1253-1264.	3.9	13
68	Osteopontin neutralisation abrogates the liver progenitor cell response and fibrogenesis in mice. Gut, 2015, 64, 1120-1131.	12.1	81
69	Advances in hepatic stem/progenitor cell biology. EXCLI Journal, 2015, 14, 33-47.	0.7	15
70	Role of liver progenitors in liver regeneration. Hepatobiliary Surgery and Nutrition, 2015, 4, 48-58.	1.5	18
71	High Throughput Micro-Well Generation of Hepatocyte Micro-Aggregates for Tissue Engineering. PLoS ONE, 2014, 9, e105171.	2.5	44
72	Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut, 2014, 63, 674-685.	12.1	221

#	Article	IF	CITATIONS
73	Syncoilin is an intermediate filament protein in activated hepatic stellate cells. Histochemistry and Cell Biology, 2014, 141, 85-99.	1.7	10
74	Capsaicin Modulates Proliferation, Migration, and Activation of Hepatic Stellate Cells. Cell Biochemistry and Biophysics, 2014, 68, 387-396.	1.8	16
75	Downregulation of Sox9 Expression Associates with Hepatogenic Differentiation of Human Liver Mesenchymal Stem/Progenitor Cells. Stem Cells and Development, 2014, 23, 1377-1391.	2.1	28
76	The biliary epithelium gives rise to liver progenitor cells. Hepatology, 2014, 60, 1367-1377.	7.3	158
77	Efficient definitive endoderm induction from mouse embryonic stem cell adherent cultures: A rapid screening model for differentiation studies. Stem Cell Research, 2014, 12, 166-177.	0.7	32
78	InÂvivo hepatocyte MR imaging using lactose functionalized magnetoliposomes. Biomaterials, 2014, 35, 1015-1024.	11.4	32
79	The roles of transforming growth factor-β, Wnt, Notch and hypoxia on liver progenitor cells in primary liver tumours. International Journal of Oncology, 2014, 44, 1015-1022.	3.3	43
80	Gene Expression Profiling and Secretome Analysis Differentiate Adult-Derived Human Liver Stem/Progenitor Cells and Human Hepatic Stellate Cells. PLoS ONE, 2014, 9, e86137.	2.5	55
81	HDAC inhibitors in experimental liver and kidney fibrosis. Fibrogenesis and Tissue Repair, 2013, 6, 1.	3.4	71
82	Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis. Toxicology and Applied Pharmacology, 2013, 271, 276-284.	2.8	54
83	Role of liver progenitors in acute liver injury. Frontiers in Physiology, 2013, 4, 258.	2.8	41
84	Class II HDAC Inhibition Hampers Hepatic Stellate Cell Activation by Induction of MicroRNA-29. PLoS ONE, 2013, 8, e55786.	2.5	56
85	Gene Expression Profiling of Early Hepatic Stellate Cell Activation Reveals a Role for Igfbp3 in Cell Migration. PLoS ONE, 2013, 8, e84071.	2.5	37
86	Epigenetic Regulation of Myeloma Within Its Bone Marrow Microenvironment. , 2013, , 255-282.		0
87	Autophagy: A new player in hepatic stellate cell activation. Autophagy, 2012, 8, 126-128.	9.1	60
88	Tumor-initiating capacity of CD138â^' and CD138+ tumor cells in the 5T33 multiple myeloma model. Leukemia, 2012, 26, 1436-1439.	7.2	31
89	Leptin-mediated reactive oxygen species production does not significantly affect primary mouse hepatocyte functions in vitro. European Journal of Gastroenterology and Hepatology, 2012, 24, 1370-1380.	1.6	18
90	Mitochondrial uncouplers inhibit hepatic stellate cell activation. BMC Gastroenterology, 2012, 12, 68.	2.0	21

#	Article	IF	CITATIONS
91	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
92	Liposome based systems for systemic siRNA delivery: Stability in blood sets the requirements for optimal carrier design. Journal of Controlled Release, 2012, 158, 362-370.	9.9	175
93	Successful isolation of liver progenitor cells by aldehyde dehydrogenase activity in naÃ⁻ve mice. Hepatology, 2012, 55, 540-552.	7.3	53
94	Sharpen your look on liver progenitor cells. Hepatology, 2012, 55, 319-321.	7.3	2
95	Distinct roles for non-muscle myosin II isoforms in mouse hepatic stellate cells. Journal of Hepatology, 2011, 54, 132-141.	3.7	14
96	A role for autophagy during hepatic stellate cell activation. Journal of Hepatology, 2011, 55, 1353-1360.	3.7	317
97	Alteration in <i>N</i> â€glycomics during mouse aging: a role for FUT8. Aging Cell, 2011, 10, 1056-1066.	6.7	28
98	Correlation Between Epidermal Growth Factor Receptor-Specific Nanobody Uptake and Tumor Burden: A Tool for Noninvasive Monitoring of Tumor Response to Therapy. Molecular Imaging and Biology, 2011, 13, 940-948.	2.6	51
99	Inhibition of placental growth factor activity reduces the severity of fibrosis, inflammation, and portal hypertension in cirrhotic mice. Hepatology, 2011, 53, 1629-1640.	7.3	78
100	Valproic Acid Attenuates Proteinuria and Kidney Injury. Journal of the American Society of Nephrology: JASN, 2011, 22, 1863-1875.	6.1	109
101	The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. Journal of Leukocyte Biology, 2011, 89, 989-999.	3.3	40
102	Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells <i>in vitro</i> and <i>in vivo</i> . Hepatology, 2010, 51, 603-614.	7.3	97
103	Reply:. Hepatology, 2010, 51, 2228-2228.	7.3	1
104	Blebbistatin inhibits contraction and accelerates migration in mouse hepatic stellate cells. British Journal of Pharmacology, 2010, 159, 304-315.	5.4	77
105	The quest for liver progenitor cells: A practical point of view. Journal of Hepatology, 2010, 52, 117-129.	3.7	73
106	Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. Journal of Hepatology, 2010, 52, 389-397.	3.7	182
107	Histone deacetylase inhibition and the regulation of cell growth with particular reference to liver pathobiology. Journal of Cellular and Molecular Medicine, 2009, 13, 2990-3005.	3.6	17
108	Vinculin and cellular retinol-binding protein-1 are markers for quiescent and activated hepatic stellate cells in formalin-fixed paraffin embedded human liver. Histochemistry and Cell Biology, 2009, 131, 313-325.	1.7	45

#	Article	IF	CITATIONS
109	Essential validation of gene trap mouse ES cell lines: a test case with the gene Ttrap. International Journal of Developmental Biology, 2009, 53, 1045-1051.	0.6	4
110	CRBP-I in the renal tubulointerstitial compartment of healthy rats and rats with renal fibrosis. Nephrology Dialysis Transplantation, 2008, 23, 3464-3471.	0.7	8
111	Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. Human Molecular Genetics, 2008, 17, 1175-1183.	2.9	85
112	Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat–Wilson syndrome. Human Molecular Genetics, 2007, 16, 1423-1436.	2.9	80
113	XSip1 neuralizing activity involves the co-repressor CtBP and occurs through BMP dependent and independent mechanisms. Developmental Biology, 2007, 306, 34-49.	2.0	52
114	CTLA-4 interacts with STAT5 and inhibits STAT5-mediated transcription. Immunology, 2006, 117, 396-401.	4.4	12
115	ÎEF1 and SIP1 are differentially expressed and have overlapping activities duringXenopusembryogenesis. Developmental Dynamics, 2006, 235, 1491-1500.	1.8	61
116	Smicl is a novel Smad interacting protein and cleavage and polyadenylation specificity factor associated protein. Genes To Cells, 2005, 10, 897-906.	1.2	15
117	NIR is a novel INHAT repressor that modulates the transcriptional activity of p53. Genes and Development, 2005, 19, 2912-2924.	5.9	56
118	Smads and chromatin modulation. Cytokine and Growth Factor Reviews, 2005, 16, 495-512.	7.2	24
119	Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochemical and Biophysical Research Communications, 2004, 322, 526-534.	2.1	50
120	Cdyl: a new transcriptional coâ€repressor. EMBO Reports, 2003, 4, 877-882.	4.5	105
121	Organization of the mouse Zfhx1b gene encoding the two-handed zinc finger repressor Smad-interacting protein-1â~†. Genomics, 2003, 82, 460-469.	2.9	34
122	Interaction between Smad-interacting Protein-1 and the Corepressor C-terminal Binding Protein Is Dispensable for Transcriptional Repression of E-cadherin. Journal of Biological Chemistry, 2003, 278, 26135-26145.	3.4	96
123	Dynamic regulation of Brachyury expression in the amphibian embryo by XSIP1. Mechanisms of Development, 2002, 111, 37-46.	1.7	40
124	Complex Smad-Dependent Transcriptional Responses in Vertebrate Development and Human Disease. Critical Reviews in Eukaryotic Gene Expression, 2002, 12, 101-118.	0.9	8
125	Transforming growth factor β signalling in vitro and in vivo: activin ligand–receptor interaction, Smad5 in vasculogenesis, and repression of target genes by the Î'EF1/ZEB-related SIP1 in the vertebrate embryo. Molecular and Cellular Endocrinology, 2001, 180, 13-24.	3.2	22
126	The Two-Handed E Box Binding Zinc Finger Protein SIP1 Downregulates E-Cadherin and Induces Invasion. Molecular Cell, 2001, 7, 1267-1278.	9.7	1,264

#	Article	IF	CITATIONS
127	SIP1 (Smad Interacting Protein 1) and Î'EF1 (Î'-Crystallin Enhancer Binding Factor) are Structurally Similar Transcriptional Repressors. Journal of Bone and Joint Surgery - Series A, 2001, 83, S1-40–S1–47.	3.0	11
128	XSIP1, a Xenopus zinc finger/homeodomain encoding gene highly expressed during early neural development. Mechanisms of Development, 2000, 94, 189-193.	1.7	46
129	Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation. Oncogene, 1999, 18, 2872-2882.	5.9	134
130	Distinct biological properties of two RET isoforms activated by MEN 2A and MEN 2B mutations. Oncogene, 1997, 14, 265-275.	5.9	90
131	Effect of nerve growth factor on the expression of cell cycle regulatory proteins in PC12 cells: dissection of the neurotrophic response from the anti-mitogenic response. Oncogene, 1996, 12, 1347-56.	5.9	51
132	The CDK inhibitor p21WAF1/Cip1 is induced through a p300-dependent mechanism during NGF-mediated neuronal differentiation of PC12 cells. Oncogene, 1996, 13, 2047-54.	5.9	59