List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2867778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the intestinal trans-epithelial transport and antioxidant activity of two hempseed peptides WVSPLAGRT (H2) and IGFLIIWV (H3). Food Research International, 2022, 152, 110720.	6.2	23
2	Hempseed (<i>Cannabis sativa</i>) Peptides WVSPLAGRT and IGFLIIWV Exert Anti-inflammatory Activity in the LPS-Stimulated Human Hepatic Cell Line. Journal of Agricultural and Food Chemistry, 2022, 70, 577-583.	5.2	20
3	Assessment of the Cholesterol-Lowering Effect of MOMAST®: Biochemical and Cellular Studies. Nutrients, 2022, 14, 493.	4.1	4
4	Gel-Forming of Self-Assembling Peptides Functionalized with Food Bioactive Motifs Modulate DPP-IV and ACE Inhibitory Activity in Human Intestinal Caco-2 Cells. Biomedicines, 2022, 10, 330.	3.2	11
5	A <i>Lupinus angustifolius</i> protein hydrolysate exerts hypocholesterolemic effects in Western diet-fed ApoE ^{â^'/â^'} mice through the modulation of LDLR and PCSK9 pathways. Food and Function, 2022, 13, 4158-4170.	4.6	15
6	Computational Design and Biological Evaluation of Analogs of Lupin Peptide P5 Endowed with Dual PCSK9/HMG-CoAR Inhibiting Activity. Pharmaceutics, 2022, 14, 665.	4.5	12
7	Impact of Soy β-Conglycinin Peptides on PCSK9 Protein Expression in HepG2 Cells. Nutrients, 2022, 14, 193.	4.1	9
8	Hempseed (Cannabis sativa) Peptide H3 (IGFLIIWV) Exerts Cholesterol-Lowering Effects in Human Hepatic Cell Line. Nutrients, 2022, 14, 1804.	4.1	11
9	Integrated Evaluation of the Multifunctional DPP-IV and ACE Inhibitory Effect of Soybean and Pea Protein Hydrolysates. Nutrients, 2022, 14, 2379.	4.1	7
10	Foodâ€derived antioxidants and COVIDâ€19. Journal of Food Biochemistry, 2021, 45, e13557.	2.9	56
11	Engineered EGF-A Peptides with Improved Affinity for Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). ACS Chemical Biology, 2021, 16, 429-439.	3.4	5
12	Extra Virgin Olive Oil Phenolic Extract on Human Hepatic HepG2 and Intestinal Caco-2 Cells: Assessment of the Antioxidant Activity and Intestinal Trans-Epithelial Transport. Antioxidants, 2021, 10, 118.	5.1	13
13	Nanostructure, Self-Assembly, Mechanical Properties, and Antioxidant Activity of a Lupin-Derived Peptide Hydrogel. Biomedicines, 2021, 9, 294.	3.2	11
14	Assessment of the Physicochemical and Conformational Changes of Ultrasound-Driven Proteins Extracted from Soybean Okara Byproduct. Foods, 2021, 10, 562.	4.3	20
15	Trans-Epithelial Transport, Metabolism, and Biological Activity Assessment of the Multi-Target Lupin Peptide LILPKHSDAD (P5) and Its Metabolite LPKHSDAD (P5-Met). Nutrients, 2021, 13, 863.	4.1	17
16	Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients, 2021, 13, 1624.	4.1	17
17	Phenolic Extracts from Extra Virgin Olive Oils Inhibit Dipeptidyl Peptidase IV Activity: In Vitro, Cellular, and In Silico Molecular Modeling Investigations. Antioxidants, 2021, 10, 1133.	5.1	7
18	Functionalization of soya press cake (okara) by ultrasonication for enhancement of submerged fermentation with Lactobacillus paracasei LUHS244 for wheat bread production. LWT - Food Science and Technology, 2021, 152, 112337.	5.2	11

#	Article	IF	CITATIONS
19	Application in nutrition: cholesterol-lowering activity. , 2021, , 551-568.		1
20	A heuristic, computer-driven and top-down approach to identify novel bioactive peptides: A proof-of-principle on angiotensin I converting enzyme inhibitory peptides. Food Research International, 2021, 150, 110753.	6.2	9
21	Composition of the Protein Ingredients from Insoluble Oat Byproducts Treated with Food-Grade Enzymes, Such as Amylase, Cellulose/Xylanase, and Protease. Foods, 2021, 10, 2695.	4.3	3
22	Characterization of the Trans-Epithelial Transport of Green Tea (C. sinensis) Catechin Extracts with In Vitro Inhibitory Effect against the SARS-CoV-2 Papain-like Protease Activity. Molecules, 2021, 26, 6744.	3.8	8
23	Soyfoods, glycemic control and diabetes. Nutrition Clinique Et Metabolisme, 2020, 34, 141-148.	0.5	4
24	Virgin Olive Oil Extracts Reduce Oxidative Stress and Modulate Cholesterol Metabolism: Comparison between Oils Obtained with Traditional and Innovative Processes. Antioxidants, 2020, 9, 798.	5.1	13
25	Analysis of Narrow-Leaf Lupin Proteins in Lupin-Enriched Pasta by Untargeted and Targeted Mass Spectrometry. Foods, 2020, 9, 1083.	4.3	6
26	Phycobiliproteins from Arthrospira Platensis (Spirulina): A New Source of Peptides with Dipeptidyl Peptidase-IV Inhibitory Activity. Nutrients, 2020, 12, 794.	4.1	43
27	Assessment of the Multifunctional Behavior of Lupin Peptide P7 and Its Metabolite Using an Integrated Strategy. Journal of Agricultural and Food Chemistry, 2020, 68, 13179-13188.	5.2	24
28	"Bottom-Up―Strategy for the Identification of Novel Soybean Peptides with Angiotensin-Converting Enzyme Inhibitory Activity. Journal of Agricultural and Food Chemistry, 2020, 68, 2082-2090.	5.2	12
29	Extra Virgin Olive Oil Phenol Extracts Exert Hypocholesterolemic Effects through the Modulation of the LDLR Pathway: In Vitro and Cellular Mechanism of Action Elucidation. Nutrients, 2020, 12, 1723.	4.1	30
30	Lupin Peptide T9 (GQEQSHQDEGVIVR) Modulates the Mutant PCSK9D374Y Pathway: in vitro Characterization of its Dual Hypocholesterolemic Behavior. Nutrients, 2019, 11, 1665.	4.1	20
31	Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis. Journal of Agricultural and Food Chemistry, 2019, 67, 11825-11838.	5.2	33
32	Chemical and biological characterization of spirulina protein hydrolysates: Focus on ACE and DPP-IV activities modulation. Journal of Functional Foods, 2019, 63, 103592.	3.4	32
33	Computationally Driven Structure Optimization, Synthesis, and Biological Evaluation of Imidazole-Based Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 6163-6174.	6.4	29
34	A Supramolecular Approach to Develop New Soybean and Lupin Peptide Nanogels with Enhanced Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Activity. Journal of Agricultural and Food Chemistry, 2019, 67, 3615-3623.	5.2	18
35	Soybean Peptides Exert Multifunctional Bioactivity Modulating 3-Hydroxy-3-Methylglutaryl-CoA Reductase and Dipeptidyl Peptidase-IV Targets in Vitro. Journal of Agricultural and Food Chemistry, 2019, 67, 4824-4830.	5.2	24
36	Biological Characterization of Computationally Designed Analogs of peptide TVFTSWEEYLDWV (Pep2-8) with Increased PCSK9 Antagonistic Activity. Scientific Reports, 2019, 9, 2343.	3.3	15

#	Article	lF	CITATIONS
37	Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods, 2019, 55, 135-145.	3.4	110
38	Cholesterol-Reducing Foods: Proteins and Peptides. , 2019, , 323-329.		3
39	Inhibition of PCSK9 ^{D374Y} /LDLR Protein–Protein Interaction by Computationally Designed T9 Lupin Peptide. ACS Medicinal Chemistry Letters, 2019, 10, 425-430.	2.8	22
40	YDFYPSSTKDQQS (P3), a peptide from lupin protein, absorbed by Caco-2 cells, modulates cholesterol metabolism in HepG2 cells via SREBP-1 activation. Journal of Food Biochemistry, 2018, 42, e12524.	2.9	13
41	Effect of soy on metabolic syndrome and cardiovascular risk factors: a randomized controlled trial. European Journal of Nutrition, 2018, 57, 499-511.	3.9	49
42	Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC–MS/MS. Food Chemistry, 2018, 239, 935-945.	8.2	15
43	First Food-Derived Peptide Inhibitor of the Protein–Protein Interaction between Gain-of-Function PCSK9 ^{D374Y} and the Low-Density Lipoprotein Receptor. Journal of Agricultural and Food Chemistry, 2018, 66, 10552-10557.	5.2	20
44	Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell. Journal of Functional Foods, 2018, 45, 363-370.	3.4	44
45	Soybean- and Lupin-Derived Peptides Inhibit DPP-IV Activity on In Situ Human Intestinal Caco-2 Cells and Ex Vivo Human Serum. Nutrients, 2018, 10, 1082.	4.1	75
46	Enhancement of the Stability and Anti-DPPIV Activity of Hempseed Hydrolysates Through Self-Assembling Peptide-Based Hydrogels. Frontiers in Chemistry, 2018, 6, 670.	3.6	40
47	Investigations on the hypocholesterolaemic activity of LILPKHSDAD and LTFPGSAED, two peptides from lupin β-conglutin: Focus on LDLR and PCSK9 pathways. Journal of Functional Foods, 2017, 32, 1-8.	3.4	49
48	Hempseed Peptides Exert Hypocholesterolemic Effects with a Statin-Like Mechanism. Journal of Agricultural and Food Chemistry, 2017, 65, 8829-8838.	5.2	57
49	Effects of a lupin protein concentrate on lipids, blood pressure and insulin resistance in moderately dyslipidaemic patients: A randomised controlled trial. Journal of Functional Foods, 2017, 37, 8-15.	3.4	22
50	New ACE-Inhibitory Peptides from Hemp Seed (<i>Cannabis sativa</i> L.) Proteins. Journal of Agricultural and Food Chemistry, 2017, 65, 10482-10488.	5.2	64
51	Exploration of Potentially Bioactive Peptides Generated from the Enzymatic Hydrolysis of Hempseed Proteins. Journal of Agricultural and Food Chemistry, 2017, 65, 10174-10184.	5.2	70
52	Hypocholesterolaemic Activity of Lupin Peptides: Investigation on the Crosstalk between Human Enterocytes and Hepatocytes Using a Co-Culture System Including Caco-2 and HepG2 Cells. Nutrients, 2016, 8, 437.	4.1	31
53	Peptides Derived from Soy and Lupin Protein as Dipeptidyl-Peptidase IV Inhibitors: <i>In Vitro</i> Biochemical Screening and <i>in Silico</i> Molecular Modeling Study. Journal of Agricultural and Food Chemistry, 2016, 64, 9601-9606.	5.2	100
54	Lupin protein exerts cholesterol-lowering effects targeting PCSK9: From clinical evidences to elucidation of the in vitro molecular mechanism using HepG2 cells. Journal of Functional Foods, 2016, 23, 230-240.	3.4	36

#	Article	IF	CITATIONS
55	A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein. Journal of Functional Foods, 2016, 24, 297-306.	3.4	66
56	Disrupting the PCSK9/LDLR protein–protein interaction by an imidazole-based minimalist peptidomimetic. Organic and Biomolecular Chemistry, 2016, 14, 9736-9740.	2.8	42
57	Lupin Peptides Modulate the Protein-Protein Interaction of PCSK9 with the Low Density Lipoprotein Receptor in HepG2 Cells. Scientific Reports, 2016, 6, 29931.	3.3	69
58	Proteomic characterization of hempseed (Cannabis sativa L.). Journal of Proteomics, 2016, 147, 187-196.	2.4	64
59	Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells. International Journal of Molecular Sciences, 2015, 16, 27362-27370.	4.1	54
60	Nutraceuticals for blood pressure control. Annals of Medicine, 2015, 47, 447-456.	3.8	43
61	IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway. Journal of Functional Foods, 2015, 14, 469-478.	3.4	100
62	Two Peptides from Soy β-Conglycinin Induce a Hypocholesterolemic Effect in HepG2 Cells by a Statin-Like Mechanism: Comparative in Vitro and in Silico Modeling Studies. Journal of Agricultural and Food Chemistry, 2015, 63, 7945-7951.	5.2	71
63	The health benefits of sweet lupin seed flours and isolated proteins. Journal of Functional Foods, 2015, 18, 550-563.	3.4	116
64	The Role of Grain Legumes in the Prevention of Hypercholesterolemia and Hypertension. Critical Reviews in Plant Sciences, 2015, 34, 144-168.	5.7	73
65	A simple and high-throughput in-cell Western assay using HepG2 cell line for investigating the potential hypocholesterolemic effects of food components and nutraceutics. Food Chemistry, 2015, 169, 59-64.	8.2	17
66	ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chemistry, 2014, 145, 34-40.	8.2	138
67	Lupin Peptides Lower Low-Density Lipoprotein (LDL) Cholesterol through an Up-regulation of the LDL Receptor/Sterol Regulatory Element Binding Protein 2 (SREBP2) Pathway at HepG2 Cell Line. Journal of Agricultural and Food Chemistry, 2014, 62, 7151-7159.	5.2	90
68	Quality of <i>Lupinus albus</i> L. (White Lupin) Seed: Extent of Genotypic and Environmental Effects. Journal of Agricultural and Food Chemistry, 2014, 62, 6539-6545.	5.2	34
69	Optimization of the Enzymatic Hydrolysis of Lupin (<i>Lupinus</i>) Proteins for Producing ACE-Inhibitory Peptides. Journal of Agricultural and Food Chemistry, 2014, 62, 1846-1851.	5.2	68
70	Nutraceutical approach to moderate cardiometabolic risk: Results of a randomized, double-blind and crossover study with Armolipid Plus. Journal of Clinical Lipidology, 2014, 8, 61-68.	1.5	74
71	Alkaloids Derived from Lysine: Quinolizidine (a Focus on Lupin Alkaloids). , 2013, , 381-403.		24
72	Hypocholesterolaemic effects of lupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals. British Journal of Nutrition, 2012, 107, 1176-1183.	2.3	77

#	Article	IF	CITATIONS
73	HPLC-Chip-Multiple Reaction Monitoring (MRM) method for the label-free absolute quantification of γ-conglutin in lupin: Proteotypic peptides and standard addition method. Food Chemistry, 2012, 131, 126-133.	8.2	16
74	Mechanical and thermal processing effects on protein integrity and peptide fingerprint of pea protein isolate. Food Chemistry, 2012, 134, 113-121.	8.2	26
75	Nutritional and nutraceutical characteristics of lupin protein. Nutrafoods, 2011, 10, 23-29.	0.5	16
76	Cross-reactivity between peanut and lupin proteins. Food Chemistry, 2011, 126, 902-910.	8.2	17
77	Legumes are valuable sources of tocopherols. Food Chemistry, 2011, 127, 1199-1203.	8.2	112
78	The artificial intelligence-based chemometrical characterisation of genotype/chemotype of Lupinus albus and Lupinus angustifolius permits their identification and potentially their traceability. Food Chemistry, 2011, 129, 1806-1812.	8.2	10
79	The effects of various processing conditions on a protein isolate from Lupinus angustifolius. Food Chemistry, 2010, 120, 496-504.	8.2	43
80	Functional foods for dyslipidaemia and cardiovascular risk prevention. Nutrition Research Reviews, 2009, 22, 244-261.	4.1	70
81	A labelâ€free internal standard method for the differential analysis of bioactive lupin proteins using nano HPLCâ€Chip coupled with Ion Trap mass spectrometry. Proteomics, 2009, 9, 272-286.	2.2	52
82	Nutritional and nutraceutical approaches to dyslipidemia and atherosclerosis prevention: Focus on dietary proteins. Atherosclerosis, 2009, 203, 8-17.	0.8	114
83	Acceptability of lupin protein products in healthy competitive athletes. Sport Sciences for Health, 2008, 3, 65-71.	1.3	3
84	Evaluation of total quinolizidine alkaloids content in lupin flours, lupinâ€based ingredients, and foods. Molecular Nutrition and Food Research, 2008, 52, 490-495.	3.3	45
85	Reduced mammary tumor progression in a transgenic mouse model fed an isoflavoneâ€poor soy protein concentrate. Molecular Nutrition and Food Research, 2008, 52, 1121-1129.	3.3	9
86	Effect of genotype and environment on fatty acid composition of Lupinus albus L. seed. Food Chemistry, 2008, 108, 600-606.	8.2	65
87	Changes of Isoflavones during the Growth Cycle ofLupinus albus. Journal of Agricultural and Food Chemistry, 2008, 56, 4450-4456.	5.2	16
88	Quinolizidine Alkaloids in Seeds of Lupin Genotypes of Different Origins. Journal of Agricultural and Food Chemistry, 2008, 56, 3657-3663.	5.2	55
89	Hypolipidaemic and anti-atherosclerotic effects of lupin proteins in a rabbit model. British Journal of Nutrition, 2008, 100, 707-710.	2.3	61
90	Nutritional and nutraceutical considerations for dyslipidemia. Future Lipidology, 2007, 2, 313-339.	0.5	14

#	Article	lF	CITATIONS
91	Hypocholesterolaemic effects of soya proteins: results of recent studies are predictable from the Anderson meta-analysis data. British Journal of Nutrition, 2007, 97, 816-822.	2.3	58
92	Hydrolytic degradation of azimsulfuron, a sulfonylurea herbicide. Chemosphere, 2007, 68, 1312-1317.	8.2	40
93	Synthesis and Antifungal Activity of a Series ofN-Substituted [2-(2,4-Dichlorophenyl)-3-(1,2,4-triazol-1-yl)]propylamines. Journal of Agricultural and Food Chemistry, 2007, 55, 8187-8192.	5.2	16
94	Parameters for the evaluation of the thermal damage and nutraceutical potential of lupin-based ingredients and food products. Molecular Nutrition and Food Research, 2007, 51, 431-436.	3.3	21
95	Technological properties and non-enzymatic browning of white lupin protein enriched spaghetti. Food Chemistry, 2007, 101, 57-64.	8.2	72
96	The fatty acid composition of the oil from Lupinus albus cv. Luxe as affected by environmental and agricultural factors. European Food Research and Technology, 2007, 225, 769-776.	3.3	27
97	Optimization of a Pilot-Scale Process for Producing Lupin Protein Isolates with Valuable Technological Properties and Minimum Thermal Damage. Journal of Agricultural and Food Chemistry, 2006, 54, 92-98.	5.2	79
98	Preliminary approaches for the development of a high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method for the detection and label-free semi-quantitation of the main storage proteins ofLupinus albus in foods. Rapid Communications in Mass Spectrometry, 2006, 20, 1305-1316.	1.5	16
99	Soy protein diet improves endothelial dysfunction in renal transplant patients. Nephrology Dialysis Transplantation, 2006, 22, 229-234.	0.7	42
100	Isoflavone content of Italian soy food products and daily intakes of some specific classes of consumers. European Food Research and Technology, 2005, 221, 84-91.	3.3	21
101	A simple method for the characterization and quantification of soy isoflavone metabolites in the serum of MMTV-Neu mice using high-performance liquid chromatography/electrospray ionization mass spectrometry with multiple reaction monitoring. Rapid Communications in Mass Spectrometry, 2005, 19, 153-161.	1.5	15
102	Characterization and quantification of soy isoflavone metabolites in serum of renal transplanted patients by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 3473-3481.	1.5	20
103	Analysis of <i>Lupinus albus</i> Storage Proteins by Two-Dimensional Electrophoresis and Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2005, 53, 4599-4606.	5.2	40
104	Phytoestrogens: End of a tale?. Annals of Medicine, 2005, 37, 423-438.	3.8	154
105	Investigations on the High Molecular Weight Foaming Fractions of Espresso Coffee. Journal of Agricultural and Food Chemistry, 2004, 52, 7118-7125.	5.2	39
106	Proteins of White Lupin Seed, a Naturally Isoflavone-Poor Legume, Reduce Cholesterolemia in Rats and Increase LDL Receptor Activity in HepG2 Cells. Journal of Nutrition, 2004, 134, 18-23.	2.9	205
107	Updating on the lysinoalanine content of commercial infant formulae and beicost products. Food Chemistry, 2003, 80, 483-488.	8.2	32
108	Characterization of field-isolates and derived DMI-resistant strains of Cercospora beticola. Mycological Research, 2003, 107, 1178-1188.	2.5	6

#	Article	IF	CITATIONS
109	Biodegradation of Chlorsulfuron and Metsulfuronâ€Methyl byAspergillus nigerin Laboratory Conditions. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38, 737-746.	1.5	59
110	Lysinoalanine Content of Formulas for Enteral Nutrition. Journal of Dairy Science, 2003, 86, 2283-2287.	3.4	19
111	A Proteomic Investigation of Isolated Soy Proteins with Variable Effects in Experimental and Clinical Studies. Journal of Nutrition, 2003, 133, 9-14.	2.9	86
112	Biodegradation of Chlorsulfuron and Metsulfuron-Methyl byAspergillus niger. Scientific World Journal, The, 2002, 2, 1501-1506.	2.1	11
113	A convenient synthesis of some cross-linked amino acids and their diastereoisomeric characterization by nuclear magnetic resonance. Food Chemistry, 2002, 78, 325-331.	8.2	10
114	Effects of Olive, Canola, and Sunflower Oils on the Formation of Volatiles from the Maillard Reaction of Lysine with Xylose and Glucose. Journal of Agricultural and Food Chemistry, 2001, 49, 439-445.	5.2	53
115	Soy Protein Peptides Regulate Cholesterol Homeostasis in Hep G2 Cells. Journal of Nutrition, 2000, 130, 2543-2549.	2.9	201
116	Autoxidation in Xylose/Lysine Model Systems. Journal of Agricultural and Food Chemistry, 2000, 48, 479-483.	5.2	8
117	Synthesis, Fungicidal Activity, and QSAR of a Series of 2-Dichlorophenyl-3-triazolylpropyl Ethers. Journal of Agricultural and Food Chemistry, 2000, 48, 2547-2555.	5.2	16
118	Analysis of galactosylisomaltol in milk systems using HPLC. Food Chemistry, 1999, 67, 185-191.	8.2	8
119	Optimization of the Synthesis of the Cross-Linked Amino Acid Ornithinoalanine and Nuclear Magnetic Resonance Characterization of Lysinoalanine and Ornithinoalanine. Journal of Agricultural and Food Chemistry, 1999, 47, 939-944.	5.2	9
120	Reinvestigation of the Reaction between 2-Furancarboxaldehyde and 4-Hydroxy-5-methyl-3(2H)-furanone. Journal of Agricultural and Food Chemistry, 1999, 47, 4962-4969.	5.2	8
121	Sweet Isovanillyl Derivatives:Â Synthesis and Structureâ^'Taste Relationships of Conformationally Restricted Analogues. Journal of Agricultural and Food Chemistry, 1998, 46, 4002-4010.	5.2	13
122	Formation ofN-Nitrosoterbuthylazine andN-Nitrosoterbutryn in a Model System of Soil Water. Journal of Agricultural and Food Chemistry, 1998, 46, 314-317.	5.2	2
123	Autoxidation in the Formation of Volatiles from Glucoseâ^'Lysine. Journal of Agricultural and Food Chemistry, 1998, 46, 2554-2559.	5.2	14
124	Effect of antioxidants on the formation of volatiles from the Maillard reaction. Developments in Food Science, 1998, 40, 529-534.	0.0	1
125	Analysis of the Methanol-Extractable Nonvolatile Maillard Reaction Products of a Model Extrusion-Cooked Cereal Product. Journal of Agricultural and Food Chemistry, 1997, 45, 1256-1263.	5.2	27
126	New Colored Compounds from the Maillard Reaction between Xylose and Lysine. Journal of Agricultural and Food Chemistry, 1997, 45, 650-655.	5.2	46

#	Article	IF	CITATIONS
127	Synthesis and Structureâ^'Activity Relationships of Sweet 2-Benzoylbenzoic Acid Derivatives. Journal of Agricultural and Food Chemistry, 1997, 45, 2047-2054.	5.2	21
128	N-Nitrosation of Triazines in Human Gastric Juice. Journal of Agricultural and Food Chemistry, 1996, 44, 2852-2855.	5.2	14
129	Enzyme-Linked Immunosorbent Assay for the Quantitation of the Fungicide Tetraconazole in Fruits and Fruit Juices. Journal of Agricultural and Food Chemistry, 1996, 44, 3849-3854.	5.2	26
130	Possible involvement of salicylic acid in systemic acquired resistance ofCucumis sativus againstSphaerotheca fuliginea. European Journal of Plant Pathology, 1996, 102, 537-544.	1.7	14
131	Progress in isovanillyl sweet compounds. Food Chemistry, 1996, 56, 247-253.	8.2	8
132	Stereoselective Interaction of Tetraconazole with 14α-Demethylase in Fungi. Pesticide Biochemistry and Physiology, 1995, 53, 10-22.	3.6	17
133	Synthesis and sweet taste of optically active (–)-haematoxylin and of some (±)-haematoxylin derivatives. Journal of the Chemical Society Perkin Transactions 1, 1995, , 2447-2453.	0.9	16
134	Studies on azole-induced cell death inSaccharomyces cerevisiae. FEMS Microbiology Letters, 1994, 115, 219-222.	1.8	9
135	Synthesis of 3-aryl-1,4-benzoxathianes: application to the preparation of a sweet compound. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1241.	0.9	20
136	Low molecular weight coloured compounds formed in xylose—lysine model systemsâ~†. Food Chemistry, 1993, 46, 121-127.	8.2	49
137	Ketoconazole-mediated growth inhibition in Botrytis cinerea and Saccharomyces cerevisiae. Phytochemistry, 1993, 32, 273-280.	2.9	37
138	Isovanillyl sweeteners. Synthesis and sweet taste of sulfur heterocycles. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1359.	0.9	23
139	Molecular genetic analysis of azole antifungal mode of action. Biochemical Society Transactions, 1993, 21, 1034-1038.	3.4	109
140	Flavors from the Reaction of Lysine and Cysteine with Glucose in the Presence of Lipids. ACS Symposium Series, 1993, , 240-250.	0.5	0
141	Development of an enzyme-linked immunosorbent assay for triazole fungicides. Journal of Agricultural and Food Chemistry, 1992, 40, 328-331.	5.2	33
142	Isovanillyl sweeteners. Synthesis, conformational analysis, and structure–activity relationship of some sweet oxygen heterocycles. Journal of the Chemical Society Perkin Transactions II, 1991, , 1399-1406.	0.9	18
143	Different approaches for the evaluation of Kow for s-triazine herbicides. Chemosphere, 1991, 23, 801-812.	8.2	25
144	Comparative antifungal effect and mode of action of tetraconazole on Ustilago maydis. Pesticide Biochemistry and Physiology, 1991, 40, 274-283.	3.6	14

#	Article	IF	CITATIONS
145	A New synthesis of 4,5,6,7â€ŧetrahydrofuro[2,3â€ <i>c</i>]pyridines and furo[2,3â€ <i>c</i>]pyrrolidines. Journal of Heterocyclic Chemistry, 1990, 27, 1169-1171.	2.6	6
146	Lipophilicity-antifungal activity relationships for some isoflavonoid phytoalexins. Journal of Agricultural and Food Chemistry, 1990, 38, 834-838.	5.2	29
147	Activity of a series of .betalactams against some phytopathogenic fungi. Journal of Agricultural and Food Chemistry, 1990, 38, 2197-2199.	5.2	13
148	Synthesis and anticonvulsant and sedative-hypnotic activity of 4-(alkylimino)-2,3-dihydro-4H-1-benzopyrans and benzothiopyrans. Journal of Medicinal Chemistry, 1990, 33, 2865-2869.	6.4	56
149	Effect of Lipids in the Maillard Reaction. , 1990, , 133-138.		5
150	Structure of 4-[(2-benzoyl-1-methyl)vinyleneimino]butyric acid. Acta Crystallographica Section C: Crystal Structure Communications, 1989, 45, 65-67.	0.4	0
151	Synthetic analogs of phytoalexins. Synthesis and antifungal activity of potential free-radical scavengers. Journal of Agricultural and Food Chemistry, 1989, 37, 508-512.	5.2	21
152	Structure of ergosterol biosynthesis inhibitors. II. Structure of fenarimol, α-(2-chlorophenyl)-α-(4-chlorophenyl)-5-pyrimidinemethanol. Acta Crystallographica Section C: Crystal Structure Communications, 1988, 44, 1782-1784.	0.4	1
153	Synthesis and anti-fungal activity of simple β-lactams. European Journal of Medicinal Chemistry, 1988, 23, 149-154.	5.5	14
154	Flavor components in the Maillard reaction of different amino acids with fructose in cocoa butter-water. Qualitative and quantitative analysis of pyrazines. Journal of Agricultural and Food Chemistry, 1988, 36, 988-992.	5.2	45
155	Pulsed Positive/Negative Chemical Ionization Mass Spectrometry of Pyrazines. Heterocycles, 1988, 27, 2875.	0.7	2
156	Strecker degradation of leucine and valine in a lipidic model system. Journal of Agricultural and Food Chemistry, 1987, 35, 1035-1038.	5.2	27
157	Synthesis of some 2,3â€benzoâ€lâ€oxaoctems. Journal of Heterocyclic Chemistry, 1987, 24, 75-77.	2.6	8
158	Analogs of phytoalexins. Synthesis of some 3-phenylcoumarins and their fungicidal activity. Journal of Agricultural and Food Chemistry, 1986, 34, 185-188.	5.2	18
159	Synthesis and sweet taste of some 2-phenylbenzodioxanes. Journal of Agricultural and Food Chemistry, 1986, 34, 339-344.	5.2	19
160	Stereochemical considerations on the inhibition of hepatic epoxide hydrolase by some pesticides and their epoxides. Toxicology Letters, 1986, 30, 273-278.	0.8	1
161	Formation in aqueous solution of N-nitroso curzate and the catalytic effect of some anions. Bulletin of Environmental Contamination and Toxicology, 1986, 37, 672-676.	2.7	3
162	Structure of ergosterol-biosynthesis inhibitors. I. Structure of 1-(4-fluorophenyl)-1-(3-pyridyl)but-3-yn-1-ol, C15H12FNO. Acta Crystallographica Section C: Crystal Structure Communications, 1985, 41, 97-99.	0.4	2

#	Article	IF	CITATIONS
163	Asymmetric synthesis of 3-methyl-2-phenyl-1,4-benzodioxanes. Absolute configuration of the neolignans eusiderin and eusiderin C and D. Journal of the Chemical Society Perkin Transactions 1, 1985, , 2555.	0.9	64
164	Synthesis of some acetylenic and halovinyl heterocyclic carbonyl compounds and their activity against some phytopathogenic fungi. Pest Management Science, 1983, 14, 191-198.	0.4	6
165	Synthesis, fungicidal activity and structure-activity relationships of a series of 1-(3-pyridyl)-1-substituted-but-3-yn-1-ols. Pest Management Science, 1983, 14, 576-586.	0.4	1
166	Homolytic reductive alkylation of methylvinyl ketone with ethers by Ti(III) decomposition of t-butyl hydroperoxide. Tetrahedron, 1982, 38, 393-395.	1.9	17
167	Synthesis of some 3-phenyl-1-substituted(or 1,1- disubstituted)prop-2-yn-1-ols and their in-vivo activity against some phytopathogenic fungi. Pest Management Science, 1982, 13, 670-678.	0.4	17
168	Synthesis of Aryliodides from Diazonium Tetrafluoroborate in Dimethylsulfoxide. Synthetic Communications, 1981, 11, 639-642.	2.1	15
169	Antioxidant activity of soybean peptides on human hepatic HepG2 cells. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 7, .	2.4	5