## Martin L Kieffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2867762/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Molecular and Phylogenetic Analyses of the Complete MADS-Box Transcription Factor Family in<br>Arabidopsis. Plant Cell, 2003, 15, 1538-1551.                                                                      | 6.6  | 758       |
| 2  | Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. Plant Cell, 2005, 17, 1424-1433.                                                                                                 | 6.6  | 528       |
| 3  | TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant Journal, 2011, 68, 147-158.                                                                                                          | 5.7  | 261       |
| 4  | HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nature Communications, 2016, 7, 10269.                                              | 12.8 | 210       |
| 5  | Analysis of the Transcription Factor WUSCHEL and Its Functional Homologue in Antirrhinum Reveals<br>a Potential Mechanism for Their Roles in Meristem Maintenance. Plant Cell, 2006, 18, 560-573.                 | 6.6  | 203       |
| 6  | UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant Journal, 2006,<br>47, 480-489.                                                                                             | 5.7  | 183       |
| 7  | The <i>Arabidopsis</i> Â <i>O</i> -Linked <i>N-</i> Acetylglucosamine Transferase SPINDLY Interacts with<br>Class I TCPs to Facilitate Cytokinin Responses in Leaves and Flowers Â. Plant Cell, 2012, 24, 96-108. | 6.6  | 142       |
| 8  | Defining auxin response contexts in plant development. Current Opinion in Plant Biology, 2010, 13,<br>12-20.                                                                                                      | 7.1  | 125       |
| 9  | Auxin Controls Gravitropic Setpoint Angle in Higher Plant Lateral Branches. Current Biology, 2013, 23, 1497-1504.                                                                                                 | 3.9  | 116       |
| 10 | PLANT BIOLOGY: MADS-Box Genes Reach Maturity. Science, 2002, 296, 275-276.                                                                                                                                        | 12.6 | 62        |
| 11 | The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean. Scientific Reports, 2017, 7, 42664.                                                                         | 3.3  | 44        |
| 12 | Explaining curd and spear geometry in broccoli, cauliflower and `romanesco': quantitative variation in activity of primary meristems. Planta, 1998, 206, 34-43.                                                   | 3.2  | 25        |
| 13 | Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6463-6472.     | 7.1  | 23        |
| 14 | Developmental programmes in floral organ formation. Seminars in Cell and Developmental Biology, 2001, 12, 373-380.                                                                                                | 5.0  | 22        |
| 15 | Rapid mass production of cauliflower propagules from fractionated and graded curd. Plant Science, 1995, 107, 229-235.                                                                                             | 3.6  | 18        |
| 16 | A cost effective protocol for in vitro mass propagation of cauliflower. Plant Science, 2001, 160, 1015-1024.                                                                                                      | 3.6  | 18        |
| 17 | New fluorescent auxin probes visualise tissueâ€specific and subcellular distributions of auxin in<br>Arabidopsis. New Phytologist, 2021, 230, 535-549.                                                            | 7.3  | 15        |
| 18 | The Tetrazole Analogue of the Auxin Indole-3-acetic Acid Binds Preferentially to TIR1 and Not AFB5. ACS<br>Chemical Biology, 2018, 13, 2585-2594.                                                                 | 3.4  | 13        |

| #  | Article                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Arabidopsis JAGGED LATERAL ORGANS (JLO) gene sensitizes plants to auxin. Journal of Experimental<br>Botany, 2017, 68, 2741-2755.   | 4.8 | 11        |
| 20 | Anther culture of kale (Brassica oleracea L. convar.acephala (DC.) Alef.). Plant Cell, Tissue and Organ<br>Culture, 1993, 33, 303-313. | 2.3 | 9         |
| 21 | In Vitro Propagation of Cauliflower Using Curd Microexplants. Methods in Molecular Biology, 2012, 11013, 329-339.                      | 0.9 | 1         |