Christine J Charvet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2866839/publications.pdf

Version: 2024-02-01

38 papers 1,891 citations

20 h-index 330143 37 g-index

44 all docs 44 docs citations

times ranked

44

2231 citing authors

#	Article	IF	CITATIONS
1	Modeling Transformations of Neurodevelopmental Sequences across Mammalian Species. Journal of Neuroscience, 2013, 33, 7368-7383.	3.6	687
2	Systematic, Cross-Cortex Variation in Neuron Numbers in Rodents and Primates. Cerebral Cortex, 2015, 25, 147-160.	2.9	131
3	Systematic, balancing gradients in neuron density and number across the primate isocortex. Frontiers in Neuroanatomy, 2012, 6, 28.	1.7	101
4	Evo-Devo and Brain Scaling: Candidate Developmental Mechanisms for Variation and Constancy in Vertebrate Brain Evolution. Brain, Behavior and Evolution, 2011, 78, 248-257.	1.7	78
5	Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17642-17647.	7.1	66
6	Developmental origins of species differences in telencephalon and tectum size: Morphometric comparisons between a parakeet (<i>Melopsittacus undulatus</i>) and a quail (<i>Colinus) Tj ETQq0 0 0 rgBT /</i>	Ov erk ock 1	.0 Tef250 537 To
7	Developmental Modes and Developmental Mechanisms can Channel Brain Evolution. Frontiers in Neuroanatomy, 2011, 5, 4.	1.7	59
8	Comparing Adult Hippocampal Neurogenesis Across Species: Translating Time to Predict the Tempo in Humans. Frontiers in Neuroscience, 2018, 12, 706.	2.8	54
9	Evo-Devo and the Primate Isocortex: The Central Organizing Role of Intrinsic Gradients of Neurogenesis. Brain, Behavior and Evolution, 2014, 84, 81-92.	1.7	53
10	Developmental Species Differences in Brain Cell Cycle Rates between Northern Bobwhite Quail <i>(Colinus virginianus)</i> and Parakeets <i>(Melopsittacus undulatus)</i> Implications for Mosaic Brain Evolution. Brain, Behavior and Evolution, 2008, 72, 295-306.	1.7	52
11	Embracing covariation in brain evolution. Progress in Brain Research, 2012, 195, 71-87.	1.4	48
12	Developmental origins of mosaic brain evolution: Morphometric analysis of the developing zebra finch brain. Journal of Comparative Neurology, 2009, 514, 203-213.	1.6	38
13	Phylogeny of the Telencephalic Subventricular Zone in Sauropsids: Evidence for the Sequential Evolution of Pallial and Subpallial Subventricular Zones. Brain, Behavior and Evolution, 2009, 73, 285-294.	1.7	37
14	Combining diffusion magnetic resonance tractography with stereology highlights increased crossâ€cortical integration in primates. Journal of Comparative Neurology, 2017, 525, 1075-1093.	1.6	36
15	Variation in Human Brains May Facilitate Evolutionary Change toward a Limited Range of Phenotypes. Brain, Behavior and Evolution, 2013, 81, 74-85.	1.7	34
16	Telencephalon enlargement by the convergent evolution of expanded subventricular zones. Biology Letters, 2009, 5, 134-137.	2.3	30
17	Ex vivo fetal brain MRI: Recent advances, challenges, and future directions. Neurolmage, 2019, 195, 23-37.	4.2	30
18	Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3421-3427.	2.6	28

#	Article	lF	CITATIONS
19	Bigger brains cycle faster before neurogenesis begins: a comparison of brain development between chickens and bobwhite quail. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3469-3475.	2.6	28
20	The genetic architecture of DNA replication timing in human pluripotent stem cells. Nature Communications, 2021, 12, 6746.	12.8	26
21	Causes and consequences of expanded subventricular zones. European Journal of Neuroscience, 2011, 34, 988-993.	2.6	24
22	Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. International Journal of Molecular Sciences, 2021, 22, 9358.	4.1	23
23	Coevolution in the timing of GABAergic and pyramidal neuron maturation in primates. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171169.	2.6	18
24	Gradients in cytoarchitectural landscapes of the isocortex: Diprotodont marsupials in comparison to eutherian mammals. Journal of Comparative Neurology, 2017, 525, 1811-1826.	1.6	15
25	Phylogenetic Origins of Early Alterations in Brain Region Proportions. Brain, Behavior and Evolution, 2010, 75, 104-110.	1.7	13
26	Expansion, folding, and abnormal lamination of the chick optic tectum after intraventricular injections of FGF2. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10640-10646.	7.1	13
27	Evolution of Brain Connections: Integrating Diffusion MR Tractography With Gene Expression Highlights Increased Corticocortical Projections in Primates. Cerebral Cortex, 2019, 29, 5150-5165.	2.9	12
28	Evolution of cytoarchitectural landscapes in the mammalian isocortex: Sirenians (<i>Trichechus) Tj ETQq0 0 0 rg</i>	BT/Qverlo	ock 10 Tf 50 3
29	Brain Wiring and Supragranular-Enriched Genes Linked to Protracted Human Frontal Cortex Development. Cerebral Cortex, 2020, 30, 5654-5666.	2.9	11
30	Closing the gap from transcription to the structural connectome enhances the study of connections in the human brain. Developmental Dynamics, 2020, 249, 1047-1061.	1.8	11
31	Tracing Modification to Cortical Circuits in Human and Nonhuman Primates from High-Resolution Tractography, Transcription, and Temporal Dimensions. Journal of Neuroscience, 2022, 42, 3749-3767.	3.6	10
32	Scaling the primate lateral geniculate nucleus: Niche and neurodevelopment in the regulation of magnocellular and parvocellular cell number and nucleus volume. Journal of Comparative Neurology, 2014, 522, 1839-1857.	1.6	9
33	Cutting across structural and transcriptomic scales translates time across the lifespan in humans and chimpanzees. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202987.	2.6	9
34	Spatiotemporal clustering of cell death in the avian forebrain proliferative zone. International Journal of Developmental Biology, 2008, 52, 345-352.	0.6	9
35	High Angular Resolution Diffusion MRI Reveals Conserved and Deviant Programs in the Paths that Guide Human Cortical Circuitry. Cerebral Cortex, 2020, 30, 1447-1464.	2.9	8
36	A Reduced Progenitor Pool Population Accounts for the Rudimentary Appearance of the Septum, Medial Pallium and Dorsal Pallium in Birds. Brain, Behavior and Evolution, 2010, 76, 289-300.	1.7	7

#	Article	IF	CITATIONS
37	Distinct developmental growth patterns account for the disproportionate expansion of the rostral and caudal isocortex in evolution. Frontiers in Human Neuroscience, 2014, 8, 190.	2.0	4
38	Developmental Sequences Predict Increased Connectivity in Brain Evolution: A Comparative Analysis of Developmental Timing, Gene Expression, Neuron Numbers, and Diffusion MR Tractography., 2017,, 81-98.		1