Ana Sanchez-Migallon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2866628/publications.pdf

Version: 2024-02-01

471509 501196 42 867 17 28 citations h-index g-index papers 51 51 51 1030 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Magnetically responsive hydrophobic pockets for on–off drug release. Materials Today Chemistry, 2022, 23, 100702.	3.5	5
2	Onâ€Demand Hydrophobic Drug Release Based on Microwaveâ€Responsive Graphene Hydrogel Scaffolds. Chemistry - A European Journal, 2020, 26, 17069-17080.	3. 3	10
3	Stimuli-responsive graphene-based hydrogel driven by disruption of triazine hydrophobic interactions. Nanoscale, 2020, 12, 7072-7081.	5. 6	11
4	Physically Cross-Linked Hydrogel Based on Phenyl-1,3,5-triazine: Soft Scaffold with Aggregation-Induced Emission. ACS Macro Letters, 2019, 8, 1391-1395.	4.8	22
5	Triazineâ€Carbon Nanotubes: New Platforms for the Design of Flavin Receptors. Chemistry - A European Journal, 2016, 22, 8879-8888.	3.3	2
6	Bistriazine-based streptocyanines. Preparation, structural determination and optoelectronic properties. Dyes and Pigments, 2016, 131, 307-319.	3.7	6
7	Synthesis of imine-derived triazines with Donor–Acceptor properties. Journal of Cleaner Production, 2016, 118, 223-228.	9.3	8
8	Green synthesis of luminescent blue emitters based on bistriazines with naphthalene as a π-conjugated spacer. Dyes and Pigments, 2016, 124, 203-209.	3.7	7
9	Solvent-Free Microwave-Assisted Synthesis of 2,5-Dimethoxyphenylaminotriazines. ACS Sustainable Chemistry and Engineering, 2015, 3, 3405-3411.	6.7	10
10	Microwave-assisted selective and efficient synthesis of 1,3,5-triazinyl mono and bisureas. Tetrahedron, 2014, 70, 1733-1739.	1.9	13
11	Microwave-Assisted Selective Synthesis of Mono- and Bistriazines with Ï∈-Conjugated Spacers and Study of the Optoelectronic Properties. Journal of Organic Chemistry, 2014, 79, 4909-4919.	3.2	12
12	Solvent-free microwave-assisted synthesis of new 2,4-dimethoxybenzylaminotriazines. Arkivoc, 2014, 2014, 308-318.	0.5	3
13	Microwave-assisted synthesis of pyrazolyl bistriazines. Tetrahedron, 2010, 66, 121-127.	1.9	10
14	Multiple Hydrogen Bonds in the Self-Assembly of Aminotriazine and Glutarimide. Decisive Role of the Triazine Substituents. Crystal Growth and Design, 2008, 8, 1585-1594.	3.0	22
15	Anion-Dependent Self-Assembly of Silver(I) and Diaminotriazines to Coordination Polymers: Non-Covalent Bonds and Role Interchange between Silver and Hydrogen Bonds. Inorganic Chemistry, 2008, 47, 8957-8971.	4.0	60
16	Microwave-Assisted Reactions in Heterocyclic Compounds with Applications in Medicinal and Supramolecular Chemistry. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 877-902.	1.1	47
17	Microwave-assisted synthesis of bipyrazolyls and pyrazolyl-substituted pyrimidines. Tetrahedron, 2007, 63, 748-753.	1.9	11
18	Microwave assisted synthesis and crystal structures of 2-imidazolines and imidazoles. Tetrahedron, 2006, 62, 5868-5874.	1.9	40

#	Article	IF	Citations
19	Anticancer drug discovery and pharmaceutical chemistry: a history. Clinical and Translational Oncology, 2006, 8, 717-728.	2.4	7
20	Green Synthesis and Self-Association of 2,4-Diamino-1,3,5-triazine Derivatives ChemInform, 2005, 36, no.	0.0	0
21	Application of Microwave Irradiation, Solid Supports and Catalysts in Environmentally Benign Heterocyclic Chemistry. ChemInform, 2005, 36, no.	0.0	O
22	The Unusual Transformation of an Aromatic 1H-Imidazole into a Non-Aromatic 2H-Imidazole. Structural Chemistry, 2005, 16, 485-490.	2.0	12
23	Microwave-Assisted Synthesis and Dynamic Behaviour of N2, N4, N6-Tris (1H-pyrazolyl)-1,3,5-triazine-2,4,6-triamines. QSAR and Combinatorial Science, 2005, 24, 649-659.	1.4	21
24	Green synthesis and self-association of 2,4-diamino-1,3,5-triazine derivatives. New Journal of Chemistry, 2004, 28, 952-958.	2.8	57
25	Enhancing stereochemical diversity by means of microwave irradiation in the absence of solvent: Synthesis of highly substituted nitroproline esters via 1,3-dipolar reactions. Molecular Diversity, 2003, 7, 175-180.	3.9	11
26	The Structure of N1-Hydroxylophine N3-Oxide (=1-Hydroxy-2,4,5-triphenyl-1H-imidazole 3-Oxide) in the Solid State. Helvetica Chimica Acta, 2003, 86, 1026-1039.	1.6	10
27	Synthesis, structural determination and dynamic behavior of 2-chloro-4,6-bis(pyrazolylamino)-1,3,5-triazines. Organic and Biomolecular Chemistry, 2003, 1, 4451-4457.	2.8	35
28	Synthesis of 1,3,5-triazines in solvent-free conditions catalysed by silica-supported lewis acids. Green Chemistry, 2002, 4, 339-343.	9.0	50
29	Solvent-free synthesis and structural characterization of azolyl-substituted pyrimidines. New Journal of Chemistry, 2002, 26, 926-932.	2.8	8
30	Solvent-free preparation of tris-pyrazolyl-1,3,5-triazines. Tetrahedron, 2001, 57, 4397-4403.	1.9	45
31	Preparation of \hat{l}_{\pm} - and \hat{l}^2 -substituted alanine derivatives by \hat{l}_{\pm} -amidoalkylation or Michael addition reactions under heterogeneous catalysis assisted by microwave irradiation. Tetrahedron, 2001, 57, 5421-5428.	1.9	36
32	Enthalpies of combustion, heat capacities, and enthalpies of vaporization of 1-ethylimidazole and 1-ethylpyrazole. Journal of Chemical Thermodynamics, 1999, 31, 129-138.	2.0	21
33	Quaternization and dequaternization of pyrazoles in solventâ€free conditions: Conventional heating <i>versus</i> microwave irradiation. Journal of Heterocyclic Chemistry, 1999, 36, 889-894.	2.6	10
34	Enthalpies of Formation of N-Substituted Pyrazoles and Imidazoles. Journal of Physical Chemistry A, 1999, 103, 9336-9344.	2.5	63
35	Porphyrins with four azole substituents in meso positions. Part 2. X-ray crystal structure of meso-tetrakis {1-[2-(trimethylsilyl)ethoxymethyl]pyrazol-5-yl}-porphyrin at 200 K. Tetrahedron, 1996, 52, 10811-10822.	1.9	6
36	Porphyrins with four azole substituents in meso positions: X-ray crystal structure of Meso-tetrakis-(1-benzylpyrazol-4-yl)-porphyrin at 200 K. Tetrahedron, 1995, 51, 4779-4800.	1.9	29

#	Article	IF	CITATIONS
37	Synthesis of 4-(4-pyridyl)oxazoles. Tetrahedron, 1994, 50, 10061-10072.	1.9	9
38	Selective alkylation of pyrrole by phase transfer catalysis in the absence of solvent. Journal of Heterocyclic Chemistry, 1994, 31, 1715-1717.	2.6	18
39	Alkylation of Imidazole by Solid-Liquid Phase Transfer Catalysis in the Absence of Solvent. Synthetic Communications, 1993, 23, 1783-1786.	2.1	23
40	Selective lithiation of bis(azol-1-yl)methanes. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1079-1083.	0.9	43
41	Synthesis of N-Alkylpyrazoles by Phase Transfer Catalysis Without Solvent Without Solvent. Synthetic Communications, 1990, 20, 2849-2853.	2.1	35
42	Phase Transfer Catalysis without Solvent. Use of Alkyl Iodides. Synthetic Communications, 1989, 19, 293-296.	2.1	17