Aiko Sada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2866431/publications.pdf Version: 2024-02-01

Δικό δάδα

#	Article	IF	CITATIONS
1	Vasculature-driven stem cell population coordinates tissue scaling in dynamic organs. Science Advances, 2021, 7, .	10.3	11
2	Contribution of PDGFRα-positive cells in maintenance and injury responses in mouse large vessels. Scientific Reports, 2021, 11, 8683.	3.3	4
3	Isolation and Culture of Primary Oral Keratinocytes from the Adult Mouse Palate. Journal of Visualized Experiments, 2021, , .	0.3	0
4	Histone H3 K4/9/27 Trimethylation Levels Affect Wound Healing and Stem Cell Dynamics in Adult Skin. Stem Cell Reports, 2020, 14, 34-48.	4.8	21
5	Glycome profiling by lectin microarray reveals dynamic glycan alterations during epidermal stem cell aging. Aging Cell, 2020, 19, e13190.	6.7	23
6	Defining compartmentalized stem cell populations with distinct cell division dynamics in the ocular surface epithelium. Development (Cambridge), 2020, 147, .	2.5	8
7	Epidermal stem cell lineages. Advances in Stem Cells and Their Niches, 2019, 3, 31-72.	0.1	1
8	Wild-type and SAMP8 mice show age-dependent changes in distinct stem cell compartments of the interfollicular epidermis. PLoS ONE, 2019, 14, e0215908.	2.5	9
9	Fibulin-7, a heparin binding matricellular protein, promotes renal tubular calcification in mice. Matrix Biology, 2018, 74, 5-20.	3.6	16
10	Slc1a3-CreER as a Targeting Tool for the K6+ Epithelial Stem Cell Niche and its Precursors during Mouse Hair Follicle Cycle. Journal of Investigative Dermatology, 2017, 137, 1569-1571.	0.7	4
11	Defining the stem cell lineages in the mouse inter-follicular epidermis. Journal of Dermatological Science, 2017, 86, e54.	1.9	0
12	Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin. Nature Cell Biology, 2016, 18, 619-631.	10.3	158
13	RNA Binding Protein Nanos2 Organizes Post-transcriptional Buffering System to Retain Primitive State of Mouse Spermatogonial Stem Cells. Developmental Cell, 2015, 34, 96-107.	7.0	63
14	High Runx1 Levels Promote a Reversible, More-Differentiated Cell State in Hair-Follicle Stem Cells during Quiescence. Cell Reports, 2014, 6, 499-513.	6.4	28
15	New Insights into Mechanisms ofÂStem Cell Daughter Fate Determination in Regenerative Tissues. International Review of Cell and Molecular Biology, 2013, 300, 1-50.	3.2	16
16	NANOS2 Acts Downstream of Glial Cell Line-Derived Neurotrophic Factor Signaling to Suppress Differentiation of Spermatogonial Stem Cells. Stem Cells, 2012, 30, 280-291.	3.2	79
17	The Nanos3-3â \in^2 UTR Is Required for Germ Cell Specific NANOS3 Expression in Mouse Embryos. PLoS ONE, 2010, 5, e9300.	2.5	20
18	The RNA-Binding Protein NANOS2 Is Required to Maintain Murine Spermatogonial Stem Cells. Science, 2009, 325, 1394-1398.	12.6	271

#	Article	IF	CITATIONS
19	The heterogeneity of spermatogonia is revealed by their topology and expression of marker proteins including the germ cell-specific proteins Nanos2 and Nanos3. Developmental Biology, 2009, 336, 222-231.	2.0	177
20	17-P034 Nanos2 regulates the transcriptome in the embryonic male germ cells. Mechanisms of Development, 2009, 126, S280.	1.7	1
21	Suppression of C/EBPα expression in periportal hepatoblasts may stimulate biliary cell differentiation through increased Hnf6 and Hnf1b expression. Development (Cambridge), 2006, 133, 4233-4243.	2.5	82