Ya-Xia Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2866228/publications.pdf

Version: 2024-02-01

184	32,821	91 h-index	178
papers	citations		g-index
189	189	189	17626
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angewandte Chemie - International Edition, 2013, 52, 13186-13200.	7.2	2,329
2	Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2012, 134, 18510-18513.	6.6	1,499
3	Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 2015, 6, 8058.	5.8	1,305
4	An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Advanced Materials, 2016, 28, 1853-1858.	11.1	1,291
5	High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy and Environmental Science, 2014, 7, 1643-1647.	15.6	852
6	A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 1505-1509.	7.2	590
7	A Highâ€Energy Roomâ€∓emperature Sodiumâ€Sulfur Battery. Advanced Materials, 2014, 26, 1261-1265.	11.1	525
8	Layered Oxide Cathodes for Sodiumâ€lon Batteries: Phase Transition, Air Stability, and Performance. Advanced Energy Materials, 2018, 8, 1701912.	10.2	519
9	Watermelonâ€Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithiumâ€Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601481.	10.2	508
10	Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes. Advanced Materials, 2017, 29, 1700389.	11.1	495
11	Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 2016, 25, 120-127.	8.2	454
12	Selfâ€Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2012, 2, 1086-1090.	10.2	447
13	Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 2017, 4, 1600445.	5.6	444
14	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂ by Magnesium Substitution for Improved Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 7445-7449.	7.2	439
15	Improving the Electrode Performance of Ge through Ge@C Core–Shell Nanoparticles and Graphene Networks. Journal of the American Chemical Society, 2012, 134, 2512-2515.	6.6	436
16	Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chemical Communications, 2012, 48, 2198.	2.2	417
17	Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. Journal of the American Chemical Society, 2017, 139, 5916-5922.	6.6	410
18	Subzeroâ€Temperature Cathode for a Sodiumâ€Ion Battery. Advanced Materials, 2016, 28, 7243-7248.	11.1	406

#	Article	IF	Citations
19	Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. Journal of the American Chemical Society, 2018, 140, 82-85.	6.6	404
20	Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020, 33, 56-74.	8.3	404
21	Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogenâ€Doped Graphitic Carbon Foams for Highâ€Performance Lithium Metal Anodes. Advanced Materials, 2018, 30, 1706216.	11.1	401
22	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 2016, 138, 15825-15828.	6.6	399
23	Sulfur Encapsulated in Graphitic Carbon Nanocages for Highâ€Rate and Longâ€Cycle Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9539-9544.	11.1	392
24	An Advanced Selenium–Carbon Cathode for Rechargeable Lithium–Selenium Batteries. Angewandte Chemie - International Edition, 2013, 52, 8363-8367.	7.2	391
25	Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels. Advanced Materials, 2017, 29, 1703729.	11.1	381
26	A Sandwichâ€Like Hierarchically Porous Carbon/Graphene Composite as a Highâ€Performance Anode Material for Sodiumâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1301584.	10.2	365
27	Suppressing Surface Lattice Oxygen Release of Liâ€Rich Cathode Materials via Heterostructured Spinel Li ₄ Mn ₅ O ₁₂ Coating. Advanced Materials, 2018, 30, e1801751.	11.1	348
28	Na ⁺ /vacancy disordering promises high-rate Na-ion batteries. Science Advances, 2018, 4, eaar 6018.	4.7	341
29	Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 2018, 4, eaat5383.	4.7	337
30	Highâ€Capacity Cathode Material with High Voltage for Liâ€Ion Batteries. Advanced Materials, 2018, 30, 1705575.	11.1	333
31	Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for Highâ€Voltage Lithium Metal Batteries. Advanced Materials, 2019, 31, e1807789.	11.1	333
32	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. Joule, 2017, 1, 563-575.	11.7	329
33	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters, 2017, 2, 1385-1394.	8.8	314
34	Tiâ€Substituted NaNi _{0.5} Mn _{0.5â€} <i>_x</i> Ti <i>_x</i> O ₂ Cathodes with Reversible O3â^P3 Phase Transition for Highâ€Performance Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1700210.	11.1	309
35	Designing Air-Stable O3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries. Journal of the American Chemical Society, 2017, 139, 8440-8443.	6.6	303
36	Enhancing the Kinetics of Liâ€Rich Cathode Materials through the Pinning Effects of Gradient Surface Na ⁺ Doping. Advanced Energy Materials, 2016, 6, 1501914.	10.2	288

#	Article	IF	CITATIONS
37	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 1094-1099.	7.2	287
38	Insight into the Effect of Boron Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium—Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium—Sulfur Batteries. ACS Applied Materials & Doping on Sulfur/Carbon Cathode in Lithium†(Sulfur Batteries) & Doping on Sulfur Batteries (Sulfur Batteries) & Doping on Sulfur Batteries (S	4.0	286
39	Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chemical Communications, 2012, 48, 10663.	2.2	278
40	Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1691-1708.	3. 2	277
41	Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. Journal of the American Chemical Society, 2019, 141, 9165-9169.	6.6	272
42	Facile Synthesis of Blocky SiO <i>_×</i> /C with Graphiteâ€Like Structure for Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Functional Materials, 2018, 28, 1705235.	7.8	260
43	SiO <i>_x</i> Encapsulated in Graphene Bubble Film: An Ultrastable Liâ€lon Battery Anode. Advanced Materials, 2018, 30, e1707430.	11.1	243
44	Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy and Environmental Science, 2012, 5, 5221-5225.	15.6	241
45	Elemental Selenium for Electrochemical Energy Storage. Journal of Physical Chemistry Letters, 2015, 6, 256-266.	2.1	226
46	Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping. Advanced Science, 2017, 4, 1600400.	5.6	220
47	Electrochemical (De)Lithiation of 1D Sulfur Chains in Liâ \in Batteries: A Model System Study. Journal of the American Chemical Society, 2015, 137, 2215-2218.	6.6	209
48	Advanced Porous Carbon Materials for Highâ€Efficient Lithium Metal Anodes. Advanced Energy Materials, 2017, 7, 1700530.	10.2	208
49	A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14061.	5.2	206
50	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20138-20146.	4.0	197
51	Mitigating Interfacial Potential Drop of Cathode–Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. Journal of the American Chemical Society, 2018, 140, 6767-6770.	6.6	192
52	A Stable Layered Oxide Cathode Material for Highâ€Performance Sodiumâ€lon Battery. Advanced Energy Materials, 2019, 9, 1803978.	10.2	191
53	Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. Journal of Materials Chemistry A, 2013, 1, 6602.	5.2	189
54	Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy, 2017, 36, 411-417.	8.2	187

#	Article	IF	CITATIONS
55	An O3-type NaNi _{0.5} Mn _{0.5} O ₂ cathode for sodium-ion batteries with improved rate performance and cycling stability. Journal of Materials Chemistry A, 2016, 4, 17660-17664.	5.2	185
56	Progress of the Interface Design in Allâ€Solidâ€State Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707533.	7.8	182
57	Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10, 4930.	5.8	181
58	Electrospray Synthesis of Silicon/Carbon Nanoporous Microspheres as Improved Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 14148-14154.	1.5	177
59	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 7802-7807.	7.2	161
60	Improving the Electrochemical Performance of the Li ₄ Ti ₅ O ₁₂ Electrode in a Rechargeable Magnesium Battery by Lithiumâ€"Magnesium Coâ€Intercalation. Angewandte Chemie - International Edition, 2015, 54, 5757-5761.	7.2	156
61	Bridging Interparticle Li ⁺ Conduction in a Soft Ceramic Oxide Electrolyte. Journal of the American Chemical Society, 2021, 143, 5717-5726.	6.6	144
62	Exposing {010} Active Facets by Multipleâ€Layer Oriented Stacking Nanosheets for Highâ€Performance Capacitive Sodiumâ€Ion Oxide Cathode. Advanced Materials, 2018, 30, e1803765.	11.1	142
63	A P2/P3 composite layered cathode for high-performance Na-ion full batteries. Nano Energy, 2019, 55, 143-150.	8.2	142
64	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 2001334.	7.8	142
65	The Electrochemistry with Lithium versus Sodium of Selenium Confined To Slit Micropores in Carbon. Nano Letters, 2016, 16, 4560-4568.	4.5	140
66	Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries. Journal of the American Chemical Society, 2018, 140, 18051-18057.	6.6	138
67	Efficient 3D Conducting Networks Built by Graphene Sheets and Carbon Nanoparticles for High-Performance Silicon Anode. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2824-2828.	4.0	135
68	Advanced Se–C nanocomposites: a bifunctional electrode material for both Li–Se and Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13293.	5.2	133
69	A Highâ€Performance Composite Electrode for Vanadium Redox Flow Batteries. Advanced Energy Materials, 2017, 7, 1700461.	10.2	133
70	A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Materials, 2014, 6, e120-e120.	3.8	130
71	Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes. Nano Letters, 2018, 18, 297-301.	4.5	130
72	A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 17456.	6.7	129

#	Article	lF	Citations
73	Layer Structured α-Fe ₂ O ₃ Nanodisk/Reduced Graphene Oxide Composites as High-Performance Anode Materials for Lithium-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3932-3936.	4.0	129
74	Selfâ€Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 18146-18149.	7.2	128
75	Ameliorating the Interfacial Problems of Cathode and Solidâ€State Electrolytes by Interface Modification of Functional Polymers. Advanced Energy Materials, 2018, 8, 1801528.	10.2	127
76	3D zinc@carbon fiber composite framework anode for aqueous Zn–MnO ₂ batteries. RSC Advances, 2018, 8, 19157-19163.	1.7	126
77	Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nature Communications, 2021, 12, 5267.	5.8	122
78	Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 4799-4802.	5.2	121
79	High-Performance Lithiated SiO <i>_x</i> Anode Obtained by a Controllable and Efficient Prelithiation Strategy. ACS Applied Materials & Interfaces, 2019, 11, 32062-32068.	4.0	119
80	A Layered–Tunnel Intergrowth Structure for Highâ€Performance Sodiumâ€Ion Oxide Cathode. Advanced Energy Materials, 2018, 8, 1800492.	10.2	116
81	Interfacial design for lithium–sulfur batteries: From liquid to solid. EnergyChem, 2019, 1, 100002.	10.1	113
82	Superior Hybrid Cathode Material Containing Lithium-Excess Layered Material and Graphene for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4858-4863.	4.0	112
83	Enabling SiO <i>_x</i> /C Anode with High Initial Coulombic Efficiency through a Chemical Pre-Lithiation Strategy for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27202-27209.	4.0	112
84	Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material. Energy and Environmental Science, 2012, 5, 8007.	15.6	111
85	Rational Design of Robust Si/C Microspheres for High-Tap-Density Anode Materials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4057-4064.	4.0	111
86	An Abnormal 3.7â€Volt O3â€Type Sodiumâ€Ion Battery Cathode. Angewandte Chemie - International Edition, 2018, 57, 8178-8183.	7.2	109
87	Wet Chemistry Synthesis of Multidimensional Nanocarbon–Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3584-3590.	4.0	108
88	Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10830.	5.2	107
89	Highâ€Efficiency Cathode Sodium Compensation for Sodiumâ€lon Batteries. Advanced Materials, 2020, 32, e2001419.	11.1	106
90	In Situ Electrochemical Regeneration of Degraded LiFePO ₄ Electrode with Functionalized Prelithiation Separator. Advanced Energy Materials, 2022, 12, .	10.2	99

#	Article	IF	Citations
91	Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy and Environmental Science, 2021, 14, 1461-1468.	15.6	96
92	Mitigating the Largeâ€Volume Phase Transition of P2â€Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	96
93	Viscoelastic and Nonflammable Interface Design–Enabled Dendriteâ€Free and Safe Solid Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1803854.	10.2	93
94	Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Liâ€6 Batteries with Long Lifespan. Particle and Particle Systems Characterization, 2013, 30, 321-325.	1.2	90
95	Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives., 2021, 3, 18-41.		90
96	A Rational Reconfiguration of Electrolyte for Highâ€Energy and Longâ€Life Lithium–Chalcogen Batteries. Advanced Materials, 2020, 32, e2000302.	11.1	88
97	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂ by Magnesium Substitution for Improved Sodiumâ€ion Batteries. Angewandte Chemie, 2016, 128, 7571-7575.	1.6	84
98	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6585-6589.	7.2	84
99	An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy, 2020, 74, 104890.	8.2	84
100	An Outlook on Low-Volume-Change Lithium Metal Anodes for Long-Life Batteries. ACS Central Science, 2020, 6, 661-671.	5.3	83
101	Excellent Comprehensive Performance of Naâ€Based Layered Oxide Benefiting from the Synergetic Contributions of Multimetal lons. Advanced Energy Materials, 2017, 7, 1700189.	10.2	82
102	A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes. Angewandte Chemie, 2018, 130, 1521-1525.	1.6	82
103	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 16554-16560.	7.2	80
104	Nonaqueous Sodiumâ€ion Full Cells: Status, Strategies, and Prospects. Small, 2019, 15, e1900233.	5.2	77
105	A Universal Strategy toward Airâ€Stable and Highâ€Rate O3 Layered Oxide Cathodes for Naâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	7.8	77
106	Rechargeable dual-metal-ion batteries for advanced energy storage. Physical Chemistry Chemical Physics, 2016, 18, 9326-9333.	1.3	76
107	Fungiâ€Enabled Synthesis of Ultrahighâ€Surfaceâ€Area Porous Carbon. Advanced Materials, 2019, 31, e1805134.	11.1	75
108	Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2000791.	10.2	75

#	Article	IF	CITATIONS
109	High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42829-42835.	4.0	74
110	Direct regeneration of spent LiFePO ₄ <i>via</i> a graphite prelithiation strategy. Chemical Communications, 2020, 56, 245-248.	2.2	73
111	High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27838-27844.	4.0	68
112	Low volume change composite lithium metal anodes. Nano Energy, 2019, 64, 103910.	8.2	68
113	A Highâ€Capacity Tellurium@Carbon Anode Material for Lithiumâ€lon Batteries. Energy Technology, 2014, 2, 757-762.	1.8	66
114	An Ordered Ni ₆ â€Ring Superstructure Enables a Highly Stable Sodium Oxide Cathode. Advanced Materials, 2019, 31, e1903483.	11.1	65
115	Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries. CheM, 2018, 4, 298-307.	5.8	63
116	Stabilizing Polymer–Lithium Interface in a Rechargeable Solid Battery. Advanced Functional Materials, 2020, 30, 1908047.	7.8	59
117	Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 24184-24191.	4.0	58
118	Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Research, 2017, 10, 4201-4209.	5.8	56
119	Competitive Doping Chemistry for Nickelâ€Rich Layered Oxide Cathode Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
120	Graphitic Nanocarbon–Selenium Cathode with Favorable Rate Capability for Li–Se Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 8759-8765.	4.0	54
121	Three-Dimensional Carbon Nanotubes Forest/Carbon Cloth as an Efficient Electrode for Lithium–Polysulfide Batteries. ACS Applied Materials & Interfaces, 2017, 9, 1553-1561.	4.0	54
122	Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries. Science China Chemistry, 2017, 60, 1230-1235.	4.2	52
123	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie, 2019, 131, 1106-1111.	1.6	52
124	Improving the Li-Ion Storage Performance of Layered Zinc Silicate through the Interlayer Carbon and Reduced Graphene Oxide Networks. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5777-5782.	4.0	51
125	Methods for the Stabilization of Nanostructured Electrode Materials for Advanced Rechargeable Batteries. Small Methods, 2017, 1, 1700094.	4.6	50
126	P3/O3 Integrated Layered Oxide as Highâ€Power and Longâ€Life Cathode toward Naâ€Ion Batteries. Small, 2021, 17, e2007236.	5.2	49

#	Article	IF	CITATIONS
127	Suppression of Monoclinic Phase Transitions of O3-Type Cathodes Based on Electronic Delocalization for Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22067-22073.	4.0	48
128	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 7884-7889.	1.6	47
129	Constructing a Stable Lithium Metal–Gel Electrolyte Interface for Quasi-Solid-State Lithium Batteries. ACS Applied Materials & Discrete Samp; Interfaces, 2018, 10, 30065-30070.	4.0	45
130	Novel P2-type Na $<$ sub $>2/3sub>Ni<sub>1/6sub>Mg<sub>1/6sub>Ti<sub>2/3sub>O<sub>2sub>as an anode material for sodium-ion batteries. Chemical Communications, 2017, 53, 1957-1960.$	2.2	43
131	Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. Journal of Materials Chemistry A, 2015, 3, 24221-24225.	5. 2	42
132	Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation. ACS Applied Materials & Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation. ACS Applied Materials & Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation.	4.0	42
133	Suppressing Manganese Dissolution via Exposing Stable {111} Facets for Highâ€Performance Lithiumâ€lon Oxide Cathode. Advanced Science, 2019, 6, 1801908.	5. 6	41
134	A Rational Biphasic Tailoring Strategy Enabling Highâ€Performance Layered Cathodes for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
135	Three-dimensional sandwich-type graphene@microporous carbon architecture for lithium–sulfur batteries. RSC Advances, 2016, 6, 617-622.	1.7	40
136	In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries. CCS Chemistry, 2020, 2, 589-597.	4.6	39
137	Sizeâ€Dependent Electrochemical Magnesium Storage Performance of Spinel Lithium Titanate. Chemistry - an Asian Journal, 2014, 9, 2099-2102.	1.7	38
138	Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes. Chemical Communications, 2018, 54, 5330-5333.	2.2	38
139	High electro-catalytic graphite felt/MnO2 composite electrodes for vanadium redox flow batteries. Science China Chemistry, 2018, 61, 732-738.	4.2	37
140	Nano/Microâ€Structured Si/C Anodes with High Initial Coulombic Efficiency in Liâ€lon Batteries. Chemistry - an Asian Journal, 2016, 11, 1205-1209.	1.7	36
141	A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes. Nano Energy, 2020, 73, 104731.	8.2	36
142	Understanding the structural evolution and Na+ kinetics in honeycomb-ordered Oâ€23-Na3Ni2SbO6 cathodes. Nano Research, 2018, 11, 3258-3271.	5.8	35
143	Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery. Research, 2020, 2020, 1469301.	2.8	33
144	Size effects in lithium ion batteries. Chinese Physics B, 2016, 25, 018203.	0.7	30

#	Article	IF	Citations
145	Strategies to Build Highâ€Rate Cathode Materials for Naâ€Ion Batteries. ChemNanoMat, 2019, 5, 1253-1262.	1.5	26
146	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6647-6651.	1.6	26
147	A Stable Biomassâ€Derived Hard Carbon Anode for Highâ€Performance Sodiumâ€Ion Full Battery. Energy Technology, 2021, 9, 2000730.	1.8	26
148	Sulfur Confined in Subâ€Nanometerâ€Sized 2 D Graphene Interlayers and Its Electrochemical Behavior in Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 2690-2694.	1.7	25
149	Insights on Electrochemical Behaviors of Sodium Peroxide as a Sacrificial Cathode Additive for Boosting Energy Density of Na-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 2772-2778.	4.0	25
150	Stable Sodium Storage of Red Phosphorus Anode Enabled by a Dual-Protection Strategy. ACS Applied Materials & Dual-Protection Strategy.	4.0	24
151	Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array. ACS Applied Materials & Diterfaces, 2018, 10, 18005-18011.	4.0	23
152	An Abnormal 3.7â€Volt O3â€Type Sodium″on Battery Cathode. Angewandte Chemie, 2018, 130, 8310-8315.	1.6	23
153	Nanoparticles Engineering for Lithium″on Batteries. Particle and Particle Systems Characterization, 2013, 30, 737-753.	1.2	22
154	Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization. Science China Chemistry, 2017, 60, 1554-1560.	4.2	22
155	Green <i>in Situ</i> Growth Solid Electrolyte Interphase Layer with High Rebound Resilience for Long-Life Lithium Metal Anodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43200-43205.	4.0	22
156	Robust Electrodes with Maximized Spatial Catalysis for Vanadium Redox Flow Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38922-38927.	4.0	19
157	Insights into the pre-oxidation process of phenolic resin-based hard carbon for sodium storage. Materials Chemistry Frontiers, 2021, 5, 3911-3917.	3.2	19
158	Unveiling the Role of Heteroatom Gradient-Distributed Carbon Fibers for Vanadium Redox Flow Batteries with Long Service Life. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11451-11458.	4.0	18
159	Confined Red Phosphorus in Edible Fungus Slag-Derived Porous Carbon as an Improved Anode Material in Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47948-47955.	4.0	18
160	In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries. CCS Chemistry, 2020, 2, 589-597.	4.6	18
161	Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries. Journal of Materials Chemistry A, 2017, 5, 18464-18468.	5.2	16
162	Boron-doped three-dimensional MXene host for durable lithium-metal anode. Rare Metals, 2022, 41, 2217-2222.	3.6	16

#	Article	IF	CITATIONS
163	Scientific and technological challenges toward application of lithium–sulfur batteries. Chinese Physics B, 2016, 25, 018801.	0.7	15
164	Lithiumâ€lon Batteries: Suppressing Manganese Dissolution via Exposing Stable {111} Facets for Highâ€Performance Lithiumâ€lon Oxide Cathode (Adv. Sci. 13/2019). Advanced Science, 2019, 6, 1970076.	5 . 6	14
165	Exploiting Lithiumâ€Depleted Cathode Materials for Solidâ€State Li Metal Batteries. Advanced Energy Materials, 2019, 9, 1901335.	10.2	14
166	Selfâ∈Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 18314-18317.	1.6	13
167	Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries. Journal of Power Sources, 2020, 450, 227633.	4.0	13
168	Hydrogen Isotope Effects on Aqueous Electrolyte for Electrochemical Lithiumâ€lon Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
169	A Rational Biphasic Tailoring Strategy Enabling Highâ€Performance Layered Cathodes for Sodiumâ€lon Batteries. Angewandte Chemie, 2022, 134, .	1.6	13
170	Raising the capacity of lithium vanadium phosphate via anion and cation co-substitution. Science China Chemistry, 2020, 63, 203-207.	4.2	12
171	Constructing a stable interface between the sulfide electrolyte and the Li metal anode <i>via</i> li>a Li ⁺ -conductive gel polymer interlayer. Materials Chemistry Frontiers, 2021, 5, 5328-5335.	3.2	12
172	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie, 2021, 133, 16690-16696.	1.6	12
173	Cathode Materials: Enhancing the Kinetics of Liâ€Rich Cathode Materials through the Pinning Effects of Gradient Surface Na ⁺ Doping (Adv. Energy Mater. 6/2016). Advanced Energy Materials, 2016, 6, .	10.2	10
174	Stabilizing the Electrochemistry of Lithium-Selenium Battery via In situ Gelated Polymer Electrolyte: A Look from Anode. Chemical Research in Chinese Universities, 2021, 37, 298-303.	1.3	8
175	Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries. Nano Research, 2023, 16, 3832-3838.	5.8	8
176	Competitive Doping Chemistry for Nickelâ€Rich Layered Oxide Cathode Materials. Angewandte Chemie, 2022, 134, .	1.6	7
177	Layered Oxide Cathodeâ€Electrolyte Interface towards Naâ€Ion Batteries: Advances and Perspectives. Chemistry - an Asian Journal, 2022, 17, e202200213.	1.7	7
178	O3-Type Na _{2/3} Ni _{1/3} Ti _{2/3} O ₂ Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2022, 14, 677-683.	4.0	6
179	Synthesis of Flake-Like MnO ₂ /CNT Composite Nanotubes and Their Applications in Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2011, 11, 1996-2002.	0.9	4
180	Batteries: A High-Energy Room-Temperature Sodium-Sulfur Battery (Adv. Mater. 8/2014). Advanced Materials, 2014, 26, 1308-1308.	11.1	3

#	Article	IF	CITATIONS
181	Hydrogen Isotope Effects on Aqueous Electrolyte for Electrochemical Lithium″on Storage. Angewandte Chemie, 0, , .	1.6	3
182	SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF POLY-[2, 5-DI- N -(2, 2, 6,) Tj ETQq0 0 0 rgBT / LITHIUM-ION BATTERIES. Journal of Molecular and Engineering Materials, 2013, 01, 1340019.	Overlock 0.9	10 Tf 50 707 2
183	Innentitelbild: A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes (Angew.) Tj ETQq	1 1 0.784 1.6	314 rgBT /©√ 2
184	Batteries: Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li‧ Batteries with Long Lifespan (Part. Part. Syst. Charact. 4/2013). Particle and Particle Systems Characterization, 2013, 30, 392-392.	1.2	1